Frontiers in Electromagnetics [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 814 pages, kõrgus x laius x paksus: 257x188x48 mm, kaal: 1588 g, Illustrations (some col.)
  • Sari: IEEE Press Series on RF & Microwave Technology
  • Ilmumisaeg: 26-Nov-1999
  • Kirjastus: IEEE Publications,U.S.
  • ISBN-10: 0780347013
  • ISBN-13: 9780780347014
  • Formaat: Hardback, 814 pages, kõrgus x laius x paksus: 257x188x48 mm, kaal: 1588 g, Illustrations (some col.)
  • Sari: IEEE Press Series on RF & Microwave Technology
  • Ilmumisaeg: 26-Nov-1999
  • Kirjastus: IEEE Publications,U.S.
  • ISBN-10: 0780347013
  • ISBN-13: 9780780347014
A resource on major advances in long-standing electromagnetics problems. Describes subjects ranging from combining electromagnetic theory with mathematical concepts, to recent techniques in electromagnetic optimization and estimation. Presents developments in analytical and numerical methods for solving problems, and looks at subjects such as fractal electrodynamics, fractional calculus, and complex media theory. Of interest to antenna and microwave engineers and students. Werner teaches electrical engineering at Pennsylvania State University. Mittra teaches electrical engineering at Pennsylvania State University and directs the university's Electromagnetic Communication Research Laboratory. Annotation c. Book News, Inc., Portland, OR (booknews.com)

"FRONTIERS IN ELECTROMAGNETICS is the first all-in-one resource to bring in-depth original papers on today's major advances in long-standing electromagnetics problems. Highly regarded editors Douglas H. Werner and Raj Mittra have meticulously selected new contributed papers from preeminent researchers in the field to provide state-of-the-art discussions on emerging areas of electromagnetics. Antenna and microwave engineers and students will find key insights into current trends and techniques of electromagnetics likely to shape future directions of this increasingly important topic.

Each chapter includes a comprehensive analysis and ample references on innovative subjects that range from combining electromagnetic theory with mathematical concepts to the most recent techniques in electromagnetic optimization and estimation. The contributors also present the latest developments in analytical and numerical methods for solving electromagnetics problems. With a level of expertise unmatched in the field, FRONTIERS IN ELECTROMAGNETICS provides readers with a solid foundation to understand this rapidly changing area of technology.

Topics covering fast-developing applications in electromagnetics include:
* Fractal electrodynamics, fractal antennas and arrays, and scattering from fractally rough surfaces
* Knot electrodynamics
* The role of group theory and symmetry
* Fractional calculus
* Lommel and multiple expansions.


Professors: To request an examination copy simply e-mail collegeadoption@ieee.org."

Sponsored by:
IEEE Microwave Theory and Techniques Society, IEEE Antennas and Propagation Society.
Preface xxi List of Contributors xxiii PART I GEOMETRY, TOPOLOGY, AND GROUPS Fractal Electrodynamics: Surfaces and Superlattices 1(47) Dwight L. Jaggard Aaron D. Jaggard Panayiotis V. Frangos Introduction 1(2) Background 1(1) Overview 2(1) Introduction to Fractals 3(12) What are Fractals? 3(1) Fractal Characteristics 3(2) Bandlimited Fractals and Prefractals 5(1) Bandlimited Weierstrass Function 6(1) Triadic Cantor Set 6(1) Fractal Dimension 7(1) Motivation 7(1) Definition 7(1) Extensions 8(1) Fractals and Their Construction 9(1) Bandlimited Weierstrass Function 9(1) Sierpinski Gasket 10(1) Polyadic Cantor Bars---Minimal Lacunarity 11(1) Lacunarity 12(1) Concept 12(1) Examples---Polyadic Cantor Bars with Variable Lacunarity 13(1) Definition 14(1) Fractals and Waves 15(1) Scattering from Fractal Surfaces 15(14) Problem Geometry 16(1) Approximate Scattering Solution 17(1) Formulation of Approximate Surface Scattering Solution 17(2) Scattering Cross Sections for the Approximate Case 19(3) Observations on the Approximate Case 22(1) Exact Scattering Solution 22(1) Formulation of Exact Surface Scattering Solution 23(1) Scattering Cross Sections for the Exact Case 24(5) Observations on the Exact Case 29(1) Reflection from Cantor Superlattices 29(13) Problem Geometry 30(1) Doubly Recursive Solution 30(2) Results 32(1) Twist Plots 32(1) Nulls and Their Structure 33(2) Polarization 35(2) Fractal Descriptors: Imprinting and Extraction 37(1) Frequency-Domain Approach 37(2) Time-Scale Approach 39(2) Observations on Superlattice Scattering 41(1) Conclusion 42(6) References 42(6) Fractal-Shaped Antennas 48(46) Carles Puente Jordi Romeu Angel Cardama Introduction 48(2) Fractals, Antennas, and Fractal Antennas 50(9) Main Fractal Properties 50(1) Fractal Self-Similarity 50(3) The Fractal Dimension 53(1) Why Fractal-Shaped Antennas? 54(1) Multifrequency Fractal Antennas 55(2) Small Fractal Antennas 57(2) Multifrequency Fractal-Shaped Antennas 59(22) The Equilateral Sierpinski Antenna 59(1) The Sierpinski Gasket 59(1) Input Impedance and Return-Loss 59(3) Radiation Patterns 62(1) Current Density Distribution 62(2) Iterative Transmission Line Network Model 64(3) Variations on the Sierpinski Antenna 67(1) Variations on the Flare Angle 68(7) Shifting the Operating Bands 75(3) Fractal Tree-Like Antennas 78(3) Small Fractal Antennas 81(13) Some Theoretical Considerations 81(1) About the Koch Curve 81(1) Theoretical Hypothesis 82(1) The Small but Long Koch Monopole 83(1) Antenna Description 83(1) Input Parameters 84(2) The Quality Factor 86(3) Current Distributions 89(1) Conclusion 90(1) References 91(3) The Theory and Design of Fractal Antenna Arrays 94(110) Douglas H. Werner Pingjuan L. Werner Dwight L. Jaggard Aaron D. Jaggard Carles Puente Randy L. Haupt Introduction 94(2) The Fractal Random Array 96(4) Background and Motivation 96(2) Sample Design of a Fractal Random Array and Discussion 98(2) Aperture Arrays or Diffractals 100(22) Calculation of Radiation Patterns 101(1) Symmetry Relations 102(1) Cartesian Diffractals 103(1) Cantor Square Diffraction 104(1) Purina Square Diffraction 105(1) Sierpinski Square Diffraction 105(1) Discussion 105(8) Cantor Ring Diffractals 113(1) Triadic Cantor Ring Diffractal 114(2) Polyadic Cantor Diffractal 116(4) Discussion 120(2) Fractal Radiation Pattern Synthesis Techniques 122(20) Background 122(1) Weierstrass Linear Arrays 123(7) Fourier-Weierstrass Line Sources 130(7) Fourier-Weierstrass Linear Arrays 137(3) Weierstrass Concentric-Ring Planar Arrays 140(2) Fractal Array Factors and Their Role in the Design of Multiband Arrays 142(21) Background 142(2) Weierstrass Fractal Array Factors 144(9) Koch Fractal Array Factors 153(3) Reducing the Number of Elements: Array Truncation 156(1) Koch-Pattern Construction Algorithm 157(4) The Backman-Koch Array Factor 161(2) Deterministic Fractal Arrays 163(18) Cantor Linear Arrays 164(6) Sierpinski Carpet Arrays 170(6) Cantor Ring Arrays 176(1) Formulation 176(1) Results and Discussion 177(4) The Concentric Circular Ring Sub-Array Generator 181(19) Theory 181(3) Examples 184(1) Linear Arrays 184(2) Planar Square Arrays 186(3) Planar Triangular Arrays 189(4) Hexagonal Arrays 193(7) Conclusion 200(4) References 200(4) Target Symmetry and the Scattering Dyadic 204(33) Carl E. Baum Introduction 204(4) Reciprocity 208(1) Symmetry Groups for Target 208(2) Target Symmetry 210(1) Symmetry in General Bistatic Scattering 211(1) Symmetry in Backscattering 212(4) Symmetry in Forward-Scattering 216(6) Symmetry in Low-Frequency Scattering 222(4) Preliminaries for Self-Dual Targets 226(1) Duality 227(1) Scattering by Self-Dual Target 228(1) Backscattering by Self-Dual Target 229(2) Forward-Scattering by Self-Dual Target 231(2) Low-Frequency Scattering by Self-Dual Target 233(1) Conclusion 234(3) References 235(2) Complementary Structures in Two Dimensions 237(21) Carl E. Baum Introduction 237(1) Quasi-Static Boundary Value Problems in Two Dimensions 238(2) Two-Dimensional Complementary Structures 240(1) Lowest-Order Self-Complementary Rotation Group: C2c Symmetry 241(2) N-Fold Rotation Axis: CN Symmetry 243(4) Self-Complementary Rotation Group: CNc Symmetry 247(3) Reciprocation of Two-Dimensional Structures 250(4) Reflection Self-Complementarity 254(1) Conclusion 255(3) References 256(2) Topology in Electromagnetics 258(31) Gerald E. Marsh Introduction 258(4) Magnetic Field Helicity 262(1) Solar Prominence Helicity 263(2) Twist, Kink, and Link Helicity 265(5) Helicity and the Asymptotic Hopf Invariant 270(6) Magnetic Energy in Multiply Connected Domains 276(6) Gauge Invariance 282(1) Conclusion 282(7) Appendix: The Classical Hopf Invariant 284(2) References 286(3) The Electrodynamics of Torus Knots 289(40) Douglas H. Werner Introduction 289(2) Theoretical Development 291(11) Background 291(3) Electromagnetic Fields of a Torus Knot 294(5) The Torus Knot EFIE 299(3) Special Cases 302(2) Small Knot Approximation 302(2) The Canonical Unknot 304(1) Elliptical Torus Knots 304(4) Background 304(3) Electromagnetic Fields 307(1) Additional Special Cases 308(12) Circular Torus Knots 308(1) Small-Knot Approximation 309(1) General Case 309(1) Special Case when p = q 310(1) Special Case when p = 2q 310(1) Small-Knot Approximations for Circular Torus Knots 311(1) Special Case when p = q and γ = α 311(1) Special Case when p = 2q and γ = α 311(1) Small-Knot Approximation 312(1) General Case 312(1) Special Case when p/q = 2n 313(2) Special Case when p/q = 2n - 1 315(2) Special Case when p/q = (2n - 1)/2 317(2) Circular Loop and Linear Dipole 319(1) Results 320(5) Conclusion 325(4) Appendix 326(1) References 327(2) PART II Optimization and Estimation Biological Beamforming 329(42) Randy L. Haupt Hugh L. Southall Teresa H. ODonnell Biological Beamforming 329(1) Genetic Algorithm Beamforming 330(2) Low Sidelobe Phase Tapers 332(3) Phase-Only Adaptive Nulling 335(2) Adaptive Algorithm 337(2) Adaptive Nulling Results 339(5) Neural Network Beamforming 344(1) Neural Networks 345(1) Direction Finding 346(12) Analogy Between the Neural Network and the Butler Matrix 346(6) Single-Source DF: Comparison to Monopulse 352(1) Network Architecture for Single-Source DF 352(1) Network Training 353(1) Rapid Convergence 354(1) Monopulse Direction Finding 355(1) Experimental DF Results 355(2) Multiple-Source Direction Finding 357(1) Neural Network Beamsteering 358(13) Network Architecture for Beamsteering 358(2) The Experimental Phased-Array Antenna 360(1) Experimental Beamsteering Results in a Clean Environment 360(4) Neural Beamsteering in the Presence of a Near-Field Scatterer 364(1) Neural Network Beamsteering 365(1) Theoretical Predictions 365(2) Description of the Scattering Experiment 367(1) Experimental Beamsteering Results with a Near-Field Scatterer 368(1) References 368(3) Model-Order Reduction in Electromagnetics Using Model-Based Parameter Estimation 371(66) Edmund K. Miller Tapan K. Sarkar Background and Motivation 371(2) Waveform-Domain and Spectral-Domain Modeling 373(4) Selecting a Fitting Model 376(1) Sampling First-Principle Models and Observables in the Waveform Domain 377(7) Waveform-Domain Function Sampling 377(3) Waveform-Domain Derivative Sampling 380(1) Combining Waveform-Domain Function Sampling and Derivative Sampling 381(3) Sampling First-Principle Models and Observables in the Spectral Domain 384(7) Spectral-Domain Function Sampling 384(2) Spectral-Domain Derivative Sampling 386(1) Adapting and Optimizing Sampling of the GM 387(1) Possible Adaptive Sampling Strategies 388(1) Estimating FM Error or Uncertainty as an Adaptation Strategy 389(2) Initializing and Updating the Fitting Models 391(1) Application of MBPE to Spectral-Domain Observables 391(11) Non-Adaptive Modeling 392(3) Adaptive Modeling 395(4) Filtering Noisy Spectral Data 399(1) Estimating Data Accuracy 399(3) Waveform-Domain MBPE 402(5) Radiation-Pattern Analysis and Synthesis 403(1) Adaptive Sampling of Far-Field Patterns 404(3) Inverse Scattering 407(1) Other EM Fitting Models 407(3) Antenna Source Modeling Using MBPE 408(1) MBPE Applied to STEM 409(1) MBPE Application to a Frequency-Domain Integral Equation, First-Principles Models 410(17) The Two Application Domains in Integral-Equation Modeling 413(1) Formulation-Domain Modeling 414(1) Waveform-Based MBPE in the Formulation Domain 414(1) Modeling Frequency Variations: Antenna Applications 415(2) Modeling Frequency Variations: Elastodynamic Scattering 417(1) Modeling Spatial Variations: The Sommerfeld Problem 417(3) Modeling Spatial Variations: Waveguide Fields 420(1) Modeling Spatial Variations: Moment-Method Impedance Matrices 421(3) Using Spectral MBPE in the Solution Domain 424(1) Modeling the Admittance Matrix 424(1) Sampling Admittance-Matrices Derivatives 425(2) Observations and Concluding Comments 427(10) Appendix 9.1: Estimating Data Rank 429(2) Appendix 9.2: Using the Matrix Pencil to Estimate Waveform-Domain Parameters 431(2) References 433(4) Adaptive Decomposition in Electromagnetics 437(37) Joseph W. Burns Nikola S. Subotic Introduction 437(1) Adaptive Decomposition 438(2) Overdetermined Dictionaries 440(3) Physics-Based Dictionaries 441(2) Data-Based Dictionaries 443(1) Solution Algorithms 443(10) Method of Frames 444(1) Best Orthogonal Basis 444(1) Basis Pursuit 445(1) Basis Pursuit Decomposition Example 446(2) Matching Pursuit 448(1) Matching Pursuit Decomposition Example 449(1) Reweighted Minimum Norm 450(1) Reweighted Minimum Norm Decomposition Example 451(2) Applications 453(17) Scattering Decomposition for Inverse Problems 454(1) Identification of Scattering Centers in Range Profiles 454(3) Identification of Scattering Centers in SAR Imagery 457(3) Decompositions for Data Filtering 460(1) Measurement Contamination Mitigation 461(7) Current Decomposition for Forward Problems 468(1) Basis Transformation 468(1) Adaptive Construction of Basis Functions 469(1) Conclusion 470(4) References 470(4) PART III ANALYTICAL METHODS Lommel Expansions in Electromagnetics 474(49) Douglas H. Werner Introduction 474(2) The Cylindrical Wire Dipole Antenna 476(10) The Cylindrical Wire Kernel 478(3) The Uniform Current Vector Potential and Electromagnetic Fields 481(5) The Thin Circular Loop Antenna 486(23) An Exact Integration Procedure for Near-Zone Vector Potentials of Thin Circular Loops 489(1) Examples 490(1) Fourier Cosine Series Representation of the Loop Current 490(5) The Uniform Current Loop Antenna 495(3) The Cosinusoidal Current Loop Antenna 498(3) General Far-Field Approximations 501(1) The Traveling-Wave Current Loop Antenna 501(8) A Generalized Series Expansion 509(5) Applications 514(5) Conclusion 519(4) References 520(3) Fractional Paradigm in Electromagnetic Theory 523(30) Nader Engheta Introduction 523(1) What is Meant by Fractional Paradigm in Electromagnetic Theory? 524(5) A Recipe for Fractionalization of a Linear Operator L 528(1) Fractional Paradigm and Electromagnetic Multipoles 529(7) Fractional Paradigm and Electrostatic Image Methods for Perfectly Conducting Wedges and Cones 536(4) Fractional Paradigm in Wave Propagation 540(3) Fractionalization of the Duality Principle in Electromagnetism 543(4) Summary 547(6) Appendix 547(1) References 548(5) Spherical-Multipole Analysis in Electromagnetics 553(56) Siegfried Blume Ludger Klinkenbusch Introduction 553(3) Sphero-Conal Coordinates 556(2) Spherical-Multipole Analysis of Scalar Fields 558(10) Scalar Spherical-Multipole Expansion in Sphero-Conal Coordinates 558(7) Scalar Orthogonality Relations 565(1) Orthogonality of Lame Products 565(1) Orthogonality of Scalar Multipole Functions 566(1) Scalar Greens Functions in Sphero-Conal Coordinates 567(1) Spherical-Multipole Analysis of Electromagnetic Fields 568(16) Vector Spherical-Multipole Expansion of Solenoidal Electromagnetic Fields 568(3) Vector Orthogonality Relations 571(1) Orthogonality of the Transverse Vector Functions 571(2) Orthogonality of the Vector Spherical-Multipole Functions 573(3) Dyadic Greens Functions in Sphero-Conal Coordinates 576(5) Plane Electromagnetic Waves in Sphero-Conal Coordinates 581(3) Applications in Electrical Engineering 584(25) Electromagnetic Scattering by a PEC Semi-Infinite Elliptic Cone 584(3) Electromagnetic Scattering by a PEC Finite Elliptic Cone 587(7) Shielding Properties of a Loaded Spherical Shell with an Elliptic Aperture 594(5) Appendix 13.1 Solutions of the Vector Helmholtz Equation 599(3) Appendix 13.2 Paths of Integration for the Eigenfunction Expansion of the Dyadic Greens Function 602(2) Appendix 13.3 The Euler Summation Technique 604(2) References 606(3) PART IV NUMERICAL METHODS A Systematic Study of Perfectly Matched Absorbers 609(35) Mustafa Kuzuoglu Raj Mittra Introduction 609(3) Systematic Derivation of the Equations Governing Perfectly Matched Absorbers 612(12) Different PML Realizations for a TM Model Problem 613(1) The Split-Field Realization 614(1) The Anisotropic Realization 615(1) The Bianisotropic Realization 616(1) Cartesian Mesh Truncations and Corner Regions 617(2) Example of FEM Implementation of the Cartesian PML 619(1) Interpretation of the Cartesian PML in Terms of Complex Coordinate Stretching 620(2) PMLs in Curvilinear Coordinates 622(1) Split-Field (Non-Maxwellian) Realization 623(1) Anisotropic Realization 623(1) Bianisotropic Realization 624(1) Causality and Static PMLs 624(8) Constitutive Relations of a Causal PML 625(2) Non-Causal PML Media 627(2) Static PMLs 629(3) Reciprocity in Perfectly Matched Absorbers 632(6) Verification of Reciprocity in the Anisotropic and Bianisotropic Realizations 632(4) Example of a Non-Reciprocal PML 636(2) Conclusion 638(6) References 639(5) Fast Calculation of Interconnect Capacitances Using the Finite Difference Model Applied in Conjunction with the Perfectly Matched Layer (PML) Approach for Mesh Truncation 644(22) Vladimir Veremey Raj Mittra Introduction 644(2) Finite Difference Mesh Truncation by Means of Anisotropic Dielectric Layers 646(3) Perfectly Matched Layers for Mesh Truncation in Electrostatics 647(2) α-Technique for FD Mesh Truncation 649(3) Wraparound Technique for Mesh Truncation 652(1) Two-Step Calculation Method 653(1) Numerical Results 654(8) Microstrip Line Over a Conducting Plane 654(1) Coupled Microstrip Bends Over a Conducting Plane 655(1) Crossover 655(4) Combinations of Bends and Crossovers Above a Conducting Plane 659(3) Two-Comb Structure Over a Ground Plane 662(1) Efficient Computation of Interconnect Capacitances Using the Domain Decomposition Approach 662(3) Conclusion 665(1) References 665(1) Finite-Difference Time-Domain Methodologies for Electromagnetic Wave Propagation in Complex Media 666(42) Jeffrey L. Young Introduction 666(1) Maxwells Equations and Complex Media 667(2) FDTD Method 669(2) Non-Dispersive, Anisotropic Media 671(3) Cold Plasma 674(8) Direct Integration Method One: CP-DIM1 675(1) Direct Integration Method Two: CP-DIM2 676(1) Direct Integration Method Three: CP-DIM3 676(1) Direct Integration Method Four: CP-DIM4 677(1) Direct Integration Method Five: CP-DIM5 677(1) Recursive Convolution Method One: CP-RCM1 677(2) Recursive Convolution Method Two: CP-RCM2 679(1) Comparative Analysis 680(2) Magnetoionic Media 682(1) Isotropic, Collisionless Warm Plasma 683(3) Debye Dielectric 686(7) Direct Integration Method One: D-DIM1 687(1) Direct Integration Method Two: D-DIM2 688(1) Direct Integration Method Three: D-DIM3 689(1) Recursive Convolution Method One: D-RCM1 689(1) Recursive Convolution Method Two: D-RCM2 690(1) Comparative Analysis 690(2) Parameter Selection 692(1) Lorentz Dielectric 693(6) Direct Integration Method One: L-DIM1 694(1) Direct Integration Method Two: L-DIM2 695(1) Direct Integration Method Three: L-DIM3 695(1) Recursive Convolution Method One: L-RCM1 696(1) Recursive Convolution Method Two: L-RCM2 696(1) Comparative Analysis 697(1) Numerical Results 698(1) Magnetic Ferrites 699(3) Nonlinear Dispersive Media 702(2) Summary 704(4) References 705(3) A New Computational Electromagnetics Method Based on Discrete Mathematics 708(24) Rodolfo E. Diaz Franco Deflaviis Massimo Noro Nicolaos G. Alexopoulos Introduction 708(2) The Fitzgerald Mechanical Model 710(3) Extension to Debye Materials 713(8) The Simulation of General Ponderable Media 721(8) Non-Linear Dielectrics 721(2) How Should Moving Ponderable Media be Modeled? 723(3) Collisions Between Pulses and Objects 726(3) Conclusion 729(3) References 730(1) Glossary 731(1) Artifical Bianisotropic Composites 732(39) Frederic Mariotte Bruno Sauviac Sergei A. Tretyakov Introduction 732(2) Chiral Media and Omega Media 734(9) Classification of Bianisotropic Composites 734(1) Constitutive Equations and Electromagnetic Properties of Chiral Media 735(1) The Three General Formulations 736(2) Energy Considerations for Material Parameters 738(1) Wave Propagation in Chiral Materials 738(3) Field Equations for Uniaxial Omega Regions 741(1) Plane Eigenwaves, Propagation Factors, and Wave Impedances of Omega Media 741(2) Electromagnetic Scattering by Chiral Objects and Medium Modeling 743(13) Baseline to Model Bianisotropic Composites 743(1) Analytical Integral Equation Method for a Standard Helix 743(1) Numerical Integral Equation Method Using the Thin-Wire Approximation 744(4) Dipole Representation and Equivalent Polarizabilities for Chiral Scatterers 748(1) Calculation of Dipole Moments 748(1) Polarizabilities Calculation 749(1) Analytical Antenna Model for Canonical Chiral Objects and Omega Scatterers 750(1) Antenna Representation for the Chiral Scatterer---Polarizability Dyadic 751(2) Antenna Representation for the Omega Scatterer 753(1) Composite Modeling: Effective Medium Parameters 754(1) Isotropic Chiral Composites 754(1) Bianisotropic Composites 755(1) A Relation Between the Polarizabilities 756(1) Reflection and Transmission in Chiral and Omega Slabs: Applications 756(11) Continuity Problems with a Chiral Medium 756(4) Properties of a Single Slab 760(4) Properties of a Chiral Dallenbach Screen 764(1) Reflection and Transmission in Uniaxial Omega Slabs 765(1) Zero-Reflection Condition. Omega Slabs on Metal Surface 766(1) Future Developments and Applications 767(4) References 769(2) Index 771(14) About the Editors 785
About the Editors Douglas H. Werner is an associate professor in the Department of Electrical Engineering at Pennsylvania State University. Dr. Werner is a member of the Communications and Space Sciences Laboratory (CSSL), is affiliated with the Electromagnetic Communication Research Laboratory, and is also a senior research associate in the Intelligence and Information Operations Department of the Applied Research Laboratory all at Pennsylvania State University. He has published widely in the field and is associate editor of Radio Science. Dr. Werner has received the 1993 Applied Computational Electromagnetics Society (ACES) Best Paper Award, the 1993 International Union of Radio Science (URSI) Young Scientist Award, and the 1994 Pennsylvania State University Applied Research Laboratory Outstanding Publication Award. Raj Mittra is a professor of electrical engineering, a senior research scientist at the Applied Research Laboratory, and director of the Electromagnetic Communication Research Laboratory all based at Pennsylvania State University. Dr. Mittra has published extensively on electromagnetics, antennas, and electronic, packaging. He serves as an editor of Archiv fur Elektronik and Ubertragungstechnik (AEU), also known as International Journal of Electronics Communications, and is president of RM Associates, a consulting organization that provides services to industrial and governmental organizations. Dr. Mittra is a Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE), and he received a Guggenheim Fellowship Award in 1965 and the IEEE Centennial Medal in 1984. He is a past president of the IEEE Antennas and Propagation Society and has served as the editor of the IEEE Transactions of the Antennas and Propagation Society.

Tellige see raamat tutvumiseks TÜ Raamatupoodi!Raekoja plats 11, 51004 Tartu

Juhul, kui teie arvates võiks see raamat olla müügis ka Tartu Ülikooli Raamatupoes või soovite lihtsalt raamatuga enne ostu tutvuda, siis palun sisestaga allpool oma nimi ning e-mail. Võimaluse korral tellime raamatu poodi ning teavitame ka teid, kui raamat on müügile jõudnud.

* - väljad on kohustuslikud