Computational Geometry: Algorithms and Applications 3rd ed. 2008 [Kõva köide]

  • Formaat: Hardback, 386 pages, kõrgus x laius x paksus: 246x189x28 mm, kaal: 926 g, 370 Illustrations, black and white; XII, 386 p. 370 illus., 1 Hardback
  • Ilmumisaeg: 07-Mar-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540779736
  • ISBN-13: 9783540779735
Teised raamatud teemal:
  • Kõva köide
  • Hind: 40,51 EUR*
  • Tavahind: 50,64 EUR
  • Säästad 20%
  • Lisa soovinimekirja
  • Lisa ostukorvi
  • Kogus:
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Raamatut on võimalik tellida. Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat.
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Formaat: Hardback, 386 pages, kõrgus x laius x paksus: 246x189x28 mm, kaal: 926 g, 370 Illustrations, black and white; XII, 386 p. 370 illus., 1 Hardback
  • Ilmumisaeg: 07-Mar-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540779736
  • ISBN-13: 9783540779735
Teised raamatud teemal:
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.

This well-accepted introduction to computational geometry is a textbook for high-level undergraduate and low-level graduate courses. The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques from computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered. The book is largely self-contained and can be used for self-study by anyone with a basic background in algorithms. In this third edition, besides revisions to the second edition, new sections discussing Voronoi diagrams of line segments, farthest-point Voronoi diagrams, and realistic input models have been added.

Arvustused

"An excellent introduction to the field is given here, including a general motivation and usage cases beyond simple graphics rendering or interaction." from the ACM Reviews by William Fahle, University of Texas at Dallas, USA

Muu info

3rd edition
Computational Geometry
1(357)
Introduction
An Example: Convex Hulls
2(6)
Degeneracies and Robustness
8(2)
Application Domains
10(3)
Notes and Comments
13(2)
Exercises
15(4)
Line Segment Intersection
Thematic Map Overlay
19(26)
Line Segment Intersection
20(9)
The Doubly-Connected Edge List
29(4)
Computing the Overlay of Two Subdivisions
33(6)
Boolean Operations
39(1)
Notes and Comments
40(1)
Exercises
41(4)
Polygon Triangulation
Guarding an Art Gallery
45(18)
Guarding and Triangulations
46(3)
Partitioning a Polygon tnto Monotone Pieces
49(6)
Triangulating a Monotone Polygon
55(4)
Notes and Comments
59(1)
Exercises
60(3)
Linera Programming
Manufacturing with Molds
63(32)
The Geometry of Casting
64(2)
Half-Plane Intersection
66(5)
Incremental Linear Programming
71(5)
Randomized Linear Programming
76(3)
Unbounded Linear Programs
79(3)
Linear Programming in Higher Dimensions
82(4)
Smallest Enclosing Discs
86(3)
Notes and Comments
89(2)
Exercises
91(4)
Orthogonal Range
Searching Querying a Database
95(26)
I-Dimensional Range Searching
96(3)
Kd-Trees
99(6)
Range Trees
105(4)
Higher-Dimensional Range Trees
109(1)
General Sets of Points
110(1)
Fractional Cascading
111(4)
Notes and Comments
115(2)
Exercises
117(4)
Point Location
Knowing Where You Are
121(26)
Point Location and Trapezoidal Maps
122(6)
A Randomized Incremental Algorithm
128(9)
Dealing with Degenerate Cases
137(3)
A Tail Estimate
140(3)
Notes and Comments
143(1)
Exercises
144(3)
Voronoi Diagrams
The Post Office Problem
147(26)
Definition and Basic Properties
148(3)
Computing the Voronoi Diagram
151(9)
Voronoi Diagrams of Line Segments
160(7)
Farthest-Point Voronoi Diagrams163
Notes and Comments
167(3)
Exercises
170(3)
Arrangements and Duality
Supersampling in Ray Tracing
173(18)
Computing the Discrepancy
175(2)
Duality
177(2)
Arrangements of Lines
179(6)
Levels and Discrepancy
185(1)
Notes and comments
186(2)
Exercises
188(3)
Delaunay Triangulations
Height Interpolation
191(28)
Triangulations of Planar Point Sets
193(3)
The Delaunay Triangulation
196(3)
Computing the Delaunay Triangulation
205(9)
A Framework for Randomized Algorithms
208(6)
Notes and Comments
214(1)
Exercises
215(4)
More Geometric Data Structures
Windowing
219(24)
Interval Trees
220(6)
Priority Search Trees
226(5)
Segment Trees
231(6)
Notes and Comments
237(2)
Exercises
239(4)
Convex Hulls
Mixing Things
243(16)
The Complexity of Convex Hulls in 3-Space
244(2)
Computing Convex Hulls in 3-Space
246(4)
The Analysis
250(3)
Convex Hulls and Half-Space Intersection
253(1)
Voronoi Diagrams Revisited
254(2)
Notes and Comments
256(1)
Exercises
257(2)
Binary Space Partitions
The Painter's Algorithm
259(24)
The Definition of BSP Trees
261(2)
BSP Trees and The Painter's Algorithm
263(1)
Constructing a BSP Tree
264(4)
The Size of BSP Trees in 3-Space
268(3)
BSP Trees for Low-Density Scenes
271(7)
Notes and Comments
278(1)
Exercises
279(4)
Robot Motion Planning
Getting Where You Want to Be
283(24)
Work Space and Configuration Space
284(2)
A Point Robot
286(4)
Minkowski Sums
290(7)
Translational Motion Planning
297(2)
Motion Planning with Rotations
299(4)
Notes and Comments
303(2)
Exercises
305(2)
Quadtrees
Non-Uniform Mesh Generation
307(16)
Uniform and Non-Uniform Meshes
308(1)
Quadtrees for Point Sets
309(6)
From Quadtrees to Meshes
315(3)
Notes and Comments
318(2)
Exercises
320(3)
Visibility Graphs
Finding the Shortst Route
323(12)
Shortest Paths for a Point Robot
324(2)
Computing the Visibility Graph
326(4)
Shortest Paths for a Translating Polygonal Robot
330(1)
Notes and Comments
331(1)
Exercises
332(3)
Simplex Range Searching
Windowing Revisited
335(22)
Partition Trees
336(7)
Multi-Level Partition Trees
343(3)
Cutting Trees
346(6)
Notes and Comments
352(1)
Exercises
353(4)
Bibliography 357(20)
Index 377

Tellige see raamat tutvumiseks meie kauplusesse!Raekoja plats 11, 51004 Tartu

Juhul, kui soovite raamatuga enne ostu tutvuda, siis palun sisestaga allpool oma nimi ning e-mail.
Võimaluse korral tellime raamatu poodi ning teavitame ka teid, kui raamat on müügile jõudnud.

* - väljad on kohustuslikud