Foundations of Vibroacoustics [Pehme köide]

(University of Adelaide, Australia)
  • Formaat: Paperback / softback, 360 pages, kõrgus x laius: 254x178 mm, kaal: 635 g, 98 Line drawings, black and white; 30 Tables, black and white; 98 Illustrations, black and white
  • Ilmumisaeg: 06-Mar-2018
  • Kirjastus: CRC Press
  • ISBN-10: 1138093815
  • ISBN-13: 9781138093812
  • Pehme köide
  • Hind: 40,60 EUR*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 66,59 EUR
  • Säästad 39%
  • Lisa soovinimekirja
  • Raamatut on võimalik tellida. Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat.
  • Lisa ostukorvi
  • Kogus:
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Raamatukogudele
    • EBL
  • Formaat: Paperback / softback, 360 pages, kõrgus x laius: 254x178 mm, kaal: 635 g, 98 Line drawings, black and white; 30 Tables, black and white; 98 Illustrations, black and white
  • Ilmumisaeg: 06-Mar-2018
  • Kirjastus: CRC Press
  • ISBN-10: 1138093815
  • ISBN-13: 9781138093812

This text provides the foundation material for solving problems in vibroacoustics. These include the prediction of structural vibration levels and sound pressure levels in enclosed spaces resulting from known force or acoustic pressure excitations and the prediction of sound levels radiated by vibrating structures. The book also provides an excellent theoretical basis for understanding the processes involved in software that predicts structural vibration levels and structural sound radiation resulting from force excitation of the structure, as well as sound levels in enclosed spaces resulting from vibration of part of the enclosing structure or resulting from acoustic sources within the enclosure.

The book is written in an easy to understand style with detailed explanations of important concepts. It begins with fundamental concepts in vibroacoustics and provides a framework for problem solution in both low and high frequency ranges. It forms a primer for students, and for those already well versed in vibroacoustics, the book provides an extremely useful reference. It offers a unified treatment of both acoustics and vibration fundamentals to provide a basis for solving problems involving structural vibration, sound radiation from vibrating structures, sound in enclosed spaces, and propagation of sound and vibration.

Arvustused

"...provides the reader with a deep understanding of the physics of vibrations, sound radiation and sound propagation in structures." -- Jens Holger Rindel, Multiconsult, Norway "...gives great background and context for the development of the statistical energy method. The basic idea is explained thoroughly conceptually before it is developed mathematically... There is a good amount of detail without being burdensome. The author also explains some practical suggestions on how to simplify the problem and determine when the models are detailed "enough"... If you want a book to help you set up and solve practical problems in acoustics, vibration and noise control, then this is for you." -- Dr. Ralph T. Muehleisen, Illinois Institute of Technology "...gathers in a single book important and essential well known fundamental acoustic and mechanical concepts together with common acoustical and structural measurement principles to solve vibroacoustics problems at low and high frequencies." -- Franck Sgard, IRSST, Canada

Preface
Acknowledgments
1 Basic Concepts and Acoustic Fundamentals
1(60)
1.1 Introduction
1(1)
1.2 Notation
2(1)
1.3 Basic Concepts
3(11)
1.3.1 Acoustic Field Variables
3(1)
1.3.2 Mean Square Quantities
4(1)
1.3.3 Decibels
5(1)
1.3.4 Addition of Incoherent Sounds (Logarithmic Addition)
6(1)
1.3.5 Subtraction of Sound Pressure Levels
6(1)
1.3.6 Magnitudes
7(1)
1.3.7 Speed of Sound
7(2)
1.3.8 Dispersion
9(1)
1.3.9 Basic Frequency Analysis
10(4)
1.4 Acoustic Wave Equation
14(16)
1.4.1 Conservation of Mass
14(1)
1.4.2 Euler's Equation
15(1)
1.4.3 Equation of State
16(1)
1.4.4 Wave Equation (Linearised)
17(1)
1.4.5 Acoustic Potential Function
18(2)
1.4.6 Inhomogeneous Wave Equation
20(1)
1.4.7 Wave Equation for One-Dimensional Mean Flow
20(1)
1.4.8 Wave Equation in Cartesian, Cylindrical and Spherical Coordinates
21(1)
1.4.8.1 Cartesian Coordinates
21(1)
1.4.8.2 Cylindrical Coordinates
22(1)
1.4.8.3 Spherical Coordinates
22(1)
1.4.9 Plane and Spherical Waves
23(1)
1.4.10 Plane Wave Propagation
23(4)
1.4.11 Spherical Wave Propagation
27(1)
1.4.12 Wave Summation
28(1)
1.4.13 Plane Standing Waves
29(1)
1.4.14 Spherical Standing Waves
30(1)
1.5 Application of the Wave Equation to Analysis of Acoustic Enclosures
30(5)
1.5.1 Rectangular Enclosures
31(3)
1.5.2 Cylindrical Rooms
34(1)
1.5.3 Boundary between Low-Frequency and High-Frequency Behaviour
35(1)
1.6 Sound Propagation in Porous Media
35(26)
1.6.1 Flow Resistance
35(4)
1.6.2 Parameters for Characterising Sound Propagation in Porous Media
39(2)
1.6.3 Sound Reduction Due to Propagation through a Porous Material
41(1)
1.6.4 Measurement of Absorption Coefficients of Porous Materials
41(1)
1.6.4.1 Moving Microphone Method
41(8)
1.6.4.2 2-Microphone Method
49(3)
1.6.4.3 4-Microphone Method
52(5)
1.6.5 Calculation of Absorption Coefficients of Porous Materials
57(1)
1.6.5.1 Porous Materials with a Backing Cavity
57(1)
1.6.5.2 Multiple Layers of Porous Liner Backed by an Impedance
58(1)
1.6.5.3 Porous Liner Covered with a Limp Impervious Layer
58(1)
1.6.5.4 Porous Liner Covered with a Perforated Sheet
58(1)
1.6.5.5 Porous Liner Covered with a Limp Impervious Layer and a Perforated Sheet
59(2)
2 Structural Mechanics Fundamentals
61(68)
2.1 Introduction
61(1)
2.2 Vibration of Discrete Systems
61(13)
2.2.1 Summary of Newtonian Mechanics
61(2)
2.2.1.1 Systems of Particles
63(1)
2.2.2 Summary of Analytical Mechanics
63(1)
2.2.2.1 Generalised Coordinates
63(1)
2.2.2.2 Principle of Virtual Work
64(2)
2.2.2.3 D'Alembert's Principle
66(1)
2.2.2.4 Hamilton's Principle
66(3)
2.2.2.5 Lagrange's Equations of Motion
69(4)
2.2.2.6 Influence Coefficients
73(1)
2.3 Vibration of Continuous Systems
74(55)
2.3.1 Nomenclature and Sign Conventions
74(2)
2.3.2 Damping
76(1)
2.3.3 Waves in Beams
77(1)
2.3.3.1 Longitudinal Waves
77(3)
2.3.3.2 Torsional Waves (Transverse Shear Waves)
80(1)
2.3.3.3 Bending Waves
81(10)
2.3.3.4 Summary of Beam Resonance Frequency Formulae
91(5)
2.3.4 Waves in Thin Plates
96(1)
2.3.4.1 Longitudinal Waves
96(1)
2.3.4.2 Transverse Shear Waves
96(3)
2.3.4.3 Bending Waves
99(12)
2.3.5 Waves in Thin Circular Cylinders
111(6)
2.3.5.1 Boundary Conditions
117(5)
2.3.5.2 Cylinder Equations of Motion: Alternative Derivation
122(1)
2.3.5.3 Solution of the Equations of Motion
123(4)
2.3.5.4 Effect of Longitudinal and Circumferential Stiffeners
127(1)
2.3.5.5 Other Complicating Effects
128(1)
3 Sound Radiation and Propagation Fundamentals
129(24)
3.1 Introduction
129(1)
3.2 Green's Functions
129(2)
3.3 Acoustic Green's Functions
131(11)
3.3.1 Unbounded Medium
131(2)
3.3.2 Reciprocity
133(1)
3.3.3 Three-Dimensional Bounded Fluid
134(3)
3.3.4 Two-Dimensional Duct of Infinite Length
137(3)
3.3.4.1 Experimental Determination of the Sound Pressure for Waves Propagating in One Direction
140(2)
3.4 Green's Function for a Vibrating Surface
142(2)
3.5 General Application of Green's Functions
144(2)
3.5.1 Excitation of a Structure by Point Forces
144(1)
3.5.2 Excitation of a Structure by a Distributed Force
144(1)
3.5.3 Excitation of an Acoustic Medium by Point Acoustic Sources
145(1)
3.5.4 Excitation of an Acoustic Medium by a Vibrating Structure
145(1)
3.6 Structural Sound Radiation and Wavenumber Transforms
146(7)
4 Acoustic and Structural Impedance and Intensity
153(70)
4.1 Introduction
153(1)
4.2 Impedance
153(19)
4.2.1 Specific Acoustic Impedance, Zs
153(1)
4.2.2 Acoustic Impedance, ZA
154(1)
4.2.3 Mechanical Impedance, Zm
154(1)
4.2.4 Radiation Impedance and Radiation Efficiency
154(7)
4.2.4.1 Structural Input Impedance
161(2)
4.2.5 Force Impedance of an Infinite Beam (bending Waves)
163(2)
4.2.6 Summary of Impedance Formulae for Beams and Plates
165(1)
4.2.7 Point Force Impedance of Finite Systems
166(4)
4.2.8 Point Force Impedance of Cylinders
170(1)
4.2.8.1 Infinite cylinder
170(1)
4.2.8.2 Finite Cylinder --- Shear Diaphragm Ends
170(1)
4.2.9 Wave Impedance of Finite Structures
171(1)
4.3 Sound Intensity
172(12)
4.3.1 Plane Wave and Far Field Intensity
174(1)
4.3.2 Spherical Wave Intensity
175(1)
4.3.3 Sound Power
176(1)
4.3.4 Measurement of Sound Intensity
176(1)
4.3.4.1 Sound Intensity Measurement by the p --- u Method
177(1)
4.3.4.2 Accuracy of the p -- u Method
178(1)
4.3.4.3 Sound Intensity Measurement by the p --- p Method
178(3)
4.3.4.4 Accuracy of the p --- p Method
181(2)
4.3.5 Frequency Decomposition of the Intensity
183(1)
4.3.5.1 Direct Frequency Decomposition
183(1)
4.3.5.2 Indirect Frequency Decomposition
183(1)
4.4 Structural Intensity and Structural Power Transmission
184(39)
4.4.1 Intensity and Power Transmission Measurement in Beams
189(1)
4.4.1.1 Longitudinal Waves
189(4)
4.4.1.2 Torsional Waves
193(1)
4.4.1.3 Bending Waves
193(5)
4.4.1.4 Total Power Transmission
198(1)
4.4.1.5 Measurement of Beam Accelerations
199(3)
4.4.1.6 Effect of Transverse Sensitivity of Accelerometers
202(1)
4.4.2 Structural Power Transmission Measurement in Plates
203(1)
4.4.2.1 Longitudinal Waves
203(1)
4.4.2.2 Transverse Shear Waves
204(1)
4.4.2.3 Bending Waves
204(2)
4.4.3 Intensity Measurement in Circular Cylinders
206(1)
4.4.4 Sources of Error in the Measurement of Structural Intensity
206(2)
4.4.5 Power into Structures via a Machine Support Point or a Shaker
208(2)
4.4.6 Power Transmission into Structures via Vibration Isolators
210(1)
4.4.6.1 Single-Degree-of-Freedom Systems
211(5)
4.4.6.2 Surging in Coil Springs
216(1)
4.4.6.3 Four-Isolator Systems
216(2)
4.4.6.4 Two-Stage Vibration Isolation
218(1)
4.4.6.5 Measurement of Power Flow through a Vibration Isolator
219(4)
5 Modal Analysis
223(46)
5.1 Introduction
223(1)
5.2 Modal Analysis: Analytical
224(13)
5.2.1 Single-Degree-of-Freedom System with Viscous Damping
224(2)
5.2.2 Single-Degree-of-Freedom System with Hysteretic Damping
226(1)
5.2.3 Multi-Degree-of-Freedom Systems
226(3)
5.2.3.1 Forced Response of Undamped Systems
229(2)
5.2.3.2 Damped MDOF Systems: Proportional Damping
231(2)
5.2.3.3 Damped MDOF Systems: General Viscous Damping
233(3)
5.2.3.4 Damped MDOF Systems: General Hysteretic Damping
236(1)
5.2.4 Summary
237(1)
5.3 Modal Analysis: Numerical
237(4)
5.3.1 Modal Coupling Analysis
238(3)
5.4 Modal Analysis: Experimental
241(22)
5.4.1 Structural Modal Analysis
243(1)
5.4.1.1 Test Set-Up
243(1)
5.4.1.2 Excitation by Step Relaxation
244(1)
5.4.1.3 Excitation by Electrodynamic Shaker
244(1)
5.4.1.4 Excitation by Impact Hammer
245(2)
5.4.1.5 Structural Response Transducers
247(1)
5.4.2 Acoustic Modal Analysis
248(1)
5.4.3 Measuring the Transfer Function (or Frequency Response)
248(5)
5.4.4 Modal Parameter Identification
253(1)
5.4.4.1 Mode Shapes
253(1)
5.4.4.2 SDOF Curve Fit of FRF Data -- Peak Amplitude Method
254(1)
5.4.4.3 SDOF Curve Fit of FRF Data -- Circle Fit Method, Structural Damping
254(3)
5.4.4.4 SDOF Curve Fitting of FRF Data -- Circle Fit Method, Viscous Damping
257(1)
5.4.4.5 Circle Fit Analysis Procedure
258(1)
5.4.4.6 Reconstructing Frequency Response Curves
259(2)
5.4.4.7 Multi-Degree-of-Freedom Curve Fitting FRF Data
261(1)
5.4.4.8 Computational Mode Elimination
261(1)
5.4.4.9 Global Fitting of FRF Data
261(1)
5.4.4.10 Response Models
262(1)
5.4.4.11 Structural or Acoustic Response Prediction
263(1)
5.5 Modal Amplitude Determination from System Response Measurements
263(6)
6 Statistical Energy Analysis
269(24)
6.1 Introduction
269(1)
6.2 Model Construction and Problem Formulation
270(4)
6.2.1 Vibroacoustic System Analysis
271(2)
6.2.2 Subsystem Response as a Result of Subsystem Energy
273(1)
6.3 System Input Power
274(2)
6.4 Modal Density
276(4)
6.4.1 1-D Systems
276(1)
6.4.2 2-D Systems
276(2)
6.4.3 3-D Systems
278(1)
6.4.4 Additional Notes
279(1)
6.4.5 Numerical Methods
279(1)
6.5 Modal Overlap
280(1)
6.6 Damping Loss Factor (DLF)
280(5)
6.6.1 Measurement of Damping Loss Factors
282(1)
6.6.1.1 Modal Bandwidth Method
282(1)
6.6.1.2 Reverberant Decay Method
283(1)
6.6.1.3 Frequency Response Curve Fitting Method
283(1)
6.6.1.4 Power Balance Method
284(1)
6.6.1.5 Other Methods
284(1)
6.7 Coupling Loss Factors
285(5)
6.7.1 Coupling Loss Factors for Point Connections
286(1)
6.7.2 Coupling Loss Factors for Line Connections
286(1)
6.7.2.1 Multiple Thin Plates Connected at Their Edges
287(1)
6.7.2.2 Two Panels Separated along a Line by a Beam
288(1)
6.7.3 Coupling Loss Factors for Area Connections
288(1)
6.7.3.1 Coupling Loss Factor for Radiation from a Panel
289(1)
6.7.4 Measurement of Coupling Loss Factors
289(1)
6.8 Steps in Solving an SEA problem
290(3)
7 Spectral Analysis
293(32)
7.1 Introduction
293(1)
7.2 Digital Filtering
293(3)
7.2.1 Octave and 1/3-Octave Filter Rise Times and Settling Times
295(1)
7.3 Advanced Frequency Analysis
296(29)
7.3.1 Auto Power Spectrum and Power Spectral Density
299(4)
7.3.2 Linear Spectrum
303(1)
7.3.3 Leakage
303(1)
7.3.4 Windowing
304(2)
7.3.4.1 Amplitude Scaling to Compensate for Window Effects
306(1)
7.3.4.2 Window Function Coefficients
307(3)
7.3.4.3 Power Correction and RMS Calculation
310(1)
7.3.5 Sampling Frequency and Aliasing
311(1)
7.3.6 Overlap Processing
311(1)
7.3.7 Zero Padding
312(1)
7.3.8 Uncertainty Principle
313(1)
7.3.9 Time Synchronous Averaging and Synchronous Sampling
313(1)
7.3.10 Hilbert Transform
313(2)
7.3.11 Cross Spectrum
315(1)
7.3.12 Coherence
316(1)
7.3.13 Coherent Output Power
317(1)
7.3.14 Frequency Response (or Transfer) Function
317(1)
7.3.15 Convolution
318(2)
7.3.16 Auto-Correlation and Cross-Correlation Functions
320(2)
7.3.17 Maximum Length Sequence (MLS)
322(3)
A Review of Complex Numbers and Relevant Linear Matrix Algebra
325(8)
A.1 Complex Numbers
325(1)
A.2 Matrices and Vectors
325(1)
A.3 Addition, Subtraction and Multiplication by a Scalar
326(1)
A.4 Multiplication of Matrices
327(1)
A.5 Matrix Transposition
327(1)
A.6 Matrix Determinants
328(1)
A.7 Rank of a Matrix
329(1)
A.8 Positive and Non-Negative Definite Matrices
329(1)
A.9 Eigenvalues and Eigenvectors
329(1)
A.10 Orthogonality
329(1)
A.11 Matrix Inverses
330(1)
A.12 Singular Value Decomposition
331(1)
A.13 Vector Norms
331(2)
B Properties of Materials
333(6)
References 339(8)
Index 347
Colin Hansen began his career as a full-time consultant in noise and vibration control, before moving to University of Adelaide where he is now emeritus professor. He is past president of the International Institute of Acoustics and Vibration. His books include Engineering Noise Control (now in its 5th Edition), Active Control of Noise and Vibration, Noise Control from Concept to Application and Understanding Active Noise Cancellation, all published by Taylor & Francis.

Tellige see raamat tutvumiseks meie kauplusesse!Raekoja plats 11, 51004 Tartu

Juhul, kui soovite raamatuga enne ostu tutvuda, siis palun sisestaga allpool oma nimi ning e-mail.
Võimaluse korral tellime raamatu poodi ning teavitame ka teid, kui raamat on müügile jõudnud.

* - väljad on kohustuslikud