Introduction to Passive Radar [Kõva köide]

  • Formaat: Hardback, 212 pages, kõrgus x laius x paksus: 234x155x18 mm, kaal: 499 g
  • Ilmumisaeg: 30-Nov-2016
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1630810363
  • ISBN-13: 9781630810368
Teised raamatud teemal:
  • Kõva köide
  • Hind: 145,90 EUR
  • Lisa soovinimekirja
  • Lisa ostukorvi
  • Kogus:
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Raamatut on võimalik tellida. Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat.
  • Raamatukogudele
    • EBL
  • Formaat: Hardback, 212 pages, kõrgus x laius x paksus: 234x155x18 mm, kaal: 499 g
  • Ilmumisaeg: 30-Nov-2016
  • Kirjastus: Artech House Publishers
  • ISBN-10: 1630810363
  • ISBN-13: 9781630810368
Teised raamatud teemal:
Developed by recognized experts in the field, this first-of-its-kind resource provides an overview of the basic principles of passive radar technology, real passive radar systems and new developments in the industry. It explains in-depth how passive radar works and how it differs from the active type, while demonstrating the benefits and drawbacks of the technology. The book also explores properties of ambiguity functions, digital vs. analog, digitally-coded waveforms, vertical-plane coverage, and satellite-borne and radar illuminators. The book functions as a practical guide on direct signal suppression, passive radar performance prediction and detection and tracking. It contains concrete examples of systems and results, including analog TV, FM radio, cell phone base stations, DVB-T and DAB, HF skywave transmissions, indoor WiFi and low-cost scientific remote sensing. It will be of particular interest to radar engineers, technicians and graduates in related fields.
Foreword 9(4)
Preface 13(2)
1 Introduction
15(14)
1.1 Terminology
15(3)
1.2 History
18(7)
1.3 Approach and Scope
25(4)
References
26(3)
2 Principles of Passive Radar
29(28)
2.1 Introduction
29(1)
2.2 Bistatic and Multistatic Geometry
30(4)
2.2.1 Coverage
33(1)
2.2.2 Direct Signal Suppression
33(1)
2.3 Bistatic Range and Doppler
34(8)
2.3.1 Range Measurement
35(1)
2.3.2 Range Resolution
36(2)
2.3.3 Doppler Measurement
38(1)
2.3.4 Doppler Resolution
39(3)
2.4 Multistatic Passive Radar Range and Doppler
42(2)
2.5 Multistatic Target Location
44(1)
2.6 The Bistatic Radar Range Equation
45(3)
2.7 Bistatic Target and Clutter Signatures
48(7)
2.8 Summary
55(2)
References
55(2)
3 Properties of Illuminators
57(38)
3.1 Ambiguity Functions
57(6)
3.1.1 The Ambiguity Function in Bistatic Radar
58(4)
3.1.2 Bandwidth Extension with FM Radio Signals
62(1)
3.2 Digital Versus Analog
63(3)
3.2.1 Analog Television Signals
63(2)
3.2.2 Mismatched Filtering
65(1)
3.3 Digitally Coded Waveforms
66(12)
3.3.1 OFDM
67(1)
3.3.2 Global System for Mobile Communications
68(1)
3.3.3 Long-Term Evolution
69(2)
3.3.4 Terrestrial Digital Television
71(5)
3.3.5 WiFi and WiMAX
76(2)
3.3.6 Digital Radio Mondiale
78(1)
3.4 Vertical-Plane Coverage
78(2)
3.5 Satellite-Borne Illuminators
80(5)
3.5.1 Global Navigation Satellite System
81(1)
3.5.2 Satellite TV
82(1)
3.5.3 INMARSAT
82(2)
3.5.4 IRIDIUM
84(1)
3.5.5 Low Earth Orbit Radar Remote-Sensing Satellites
84(1)
3.6 Radar Illuminators
85(3)
3.7 Summary
88(7)
References
89(6)
4 Direct Signal Suppression
95(16)
4.1 Introduction
95(2)
4.2 Direct Signal Interference Power Levels
97(3)
4.3 Direct Signal Suppression
100(8)
4.4 Summary
108(3)
References
108(3)
5 Passive Radar Performance Prediction
111(18)
5.1 Introduction
111(1)
5.2 Detection Performance Prediction Parameters
112(6)
5.2.1 Transmit Power
112(1)
5.2.2 Target Bistatic Radar Cross-Section
113(1)
5.2.3 Receiver Noise Figure
114(2)
5.2.4 Integration Gain
116(1)
5.2.5 System Losses
117(1)
5.3 Detection Performance Prediction
118(5)
5.4 Comparing Predicted and Experimental Detection Performance
123(1)
5.5 Target Location
124(1)
5.6 Advanced Passive Radar Performance Prediction
125(1)
5.7 Summary
125(4)
References
126(3)
6 Detection and Tracking
129(18)
6.1 Introduction
129(1)
6.2 CFAR Detection
130(2)
6.3 Target Location Estimation
132(5)
6.3.1 Iso-Range Ellipses
132(2)
6.3.2 Time Difference of Arrival (TDOA)
134(2)
6.3.3 Range-Doppler Plots
136(1)
6.4 Track Filtering
137(6)
6.4.7 Kalman Filter
139(2)
6.4.2 Probability Hypothesis Density Tracking
141(1)
6.4.3 Multireceiver Passive Tracking
142(1)
6.5 Summary
143(4)
References
145(2)
7 Examples of Systems and Results
147(34)
7.1 Introduction
147(1)
7.2 Analog Television
147(1)
7.3 FM Radio
148(4)
7.3.1 Silent Sentry
148(1)
7.3.2 The Manastash Ridge Radar
149(2)
7.3.3 More Recent Experiments Using FM Radio Illuminators
151(1)
7.3.4 Summary
152(1)
7.4 Cell Phone Base Stations
152(1)
7.5 DVB-T and DAB
153(5)
7.6 Airborne Passive Radar
158(3)
7.7 HF Skywave Transmissions
161(2)
7.8 Indoor/WiFi
163(3)
7.9 Satellite-Borne Illuminators
166(3)
7.9.1 Early Experiments Using GPS and Forward Scatter
166(1)
7.9.2 Geostationary Satellites
167(1)
7.9.3 Bistatic SAR
167(1)
7.9.4 Bistatic ISAR
168(1)
7.9.5 Summary
169(1)
7.10 Low-Cost Scientific Remote Sensing
169(4)
7.10.1 Ocean Scatterometry Using GNSS Signals
169(2)
7.10.2 Terrestrial Bistatic Weather Radar
171(1)
7.10.3 Planetary Radar Remote Sensing
172(1)
7.11 Summary
173(8)
References
173(8)
8 Future Developments and Applications
181(18)
8.1 Introduction
181(1)
8.2 The Spectrum Problem and Commensal Radar
181(2)
8.2.1 The Spectrum Problem
181(1)
8.2.2 Commensal Radar
182(1)
8.3 Passive Radar in Air Traffic Management
183(2)
8.4 Countermeasures Against Passive Radar
185(1)
8.4.1 Countermeasures
185(1)
8.4.2 Bistatic Denial
186(1)
8.5 Target Recognition and Passive Radar
186(5)
8.6 Eldercare and Assisted Living
191(2)
8.7 Low-Cost Passive Radar
193(2)
8.8 The Intelligent Adaptive Radar Network
195(1)
8.9 Conclusions
196(3)
References
196(3)
Bibliography 199(4)
About the Authors 203(2)
Index 205
Hugh D. Griffiths hold the THALES/Royal Academy Chair of RF Sensors at University College London, UK.He received his Ph.D. and his D.Sc. Eng from University College London. He received his MA degree in physics from Oxford University, UK. Christopher J. Baker is chief technology officer with Aveillant Ltd. in Cambridge, UK. Previously he was the Ohio Research Scholar in Integrated Sensor Systems at Ohio State University. He received his Ph.D. and B.Sc. in applied physics from the University of Hull, UK.

Tellige see raamat tutvumiseks TÜ Raamatupoodi!Raekoja plats 11, 51004 Tartu

Juhul, kui teie arvates võiks see raamat olla müügis ka Tartu Ülikooli Raamatupoes või soovite lihtsalt raamatuga enne ostu tutvuda, siis palun sisestaga allpool oma nimi ning e-mail. Võimaluse korral tellime raamatu poodi ning teavitame ka teid, kui raamat on müügile jõudnud.

* - väljad on kohustuslikud