Modern Battery Engineering: A Comprehensive Introduction [Kõva köide]

Edited by (Univ Of Stuttgart, Germany)
  • Formaat: Hardback, 304 pages
  • Ilmumisaeg: 12-Apr-2019
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813272155
  • ISBN-13: 9789813272156
Teised raamatud teemal:
  • Kõva köide
  • Hind: 157,80 EUR*
  • Lisa soovinimekirja
  • Lisa ostukorvi
  • Kogus:
  • Tasuta tarne
  • Saadame välja 1 tööpäeva jooksul
  • Laos olemas 1 eks Raekoja plats 11, Tartu, E-R 10-18
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Formaat: Hardback, 304 pages
  • Ilmumisaeg: 12-Apr-2019
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9813272155
  • ISBN-13: 9789813272156
Teised raamatud teemal:

This richly illustrated book written by Professor Kai Peter Birke and several co-authors addresses both scientific and engineering aspects of modern batteries in a unique way. Emphasizing the engineering part of batteries, the book acts as a compass towards next generation batteries for automotive and stationary applications. The book provides distinguished answers to still open questions on how future batteries look like. Modern Battery Engineering explains why and how batteries have to be designed for successful commercialization in e-mobility and stationary applications. The book will help readers understand the principle issues of battery designs, paving the way for engineers to avoid wrong paths and settle on appropriate cell technologies for next generation batteries. This book is ideal for training courses for readers interested in the field of modern batteries.

Preface xiii
About the Editor xv
About the Authors xvii
1 Fundamental Aspects of Achievable Energy Densities in Electrochemical Cells 1(30)
Kai Peter Birke
Desirie Nadine Schweitzer
Annex
19(1)
A Specific capacity of each element
19(3)
B Series voltage of each element
22(2)
C Specific energy of each element
24(3)
D Volumetric energy density of each element
27(3)
Bibliography
30(1)
2 Lithium-ion Cells: Discussion of Different Cell Housings 31(12)
Kai Peter Birke
Shkendije Demolli
2.1 Cell Housings
31(1)
2.2 Cylindrical Cells
32(1)
2.3 Prismatic Cells
32(3)
2.4 Stabilization of Electrode and Separator Layers
35(2)
2.5 Gas Evolution
37(1)
2.6 Flexibility with Respect to Cell Size
38(1)
2.7 Producing Pouch Cells
38(1)
2.8 Status Quo of Cell Concepts
39(1)
2.9 Outlook
40(1)
Bibliography
41(2)
3 Integral Battery Architecture with Cylindrical Cells as Structural Elements 43(38)
Christoph Bolsinger
Marcel Berner
Kai Peter Birke
3.1 State of the Art Battery Systems
45(2)
3.1.1 Block architecture
45(1)
3.1.2 Modular architecture
46(1)
3.1.3 Cell circuitry
46(1)
3.2 The Battery Cell as a Structural Element
47(4)
3.2.1 Cylindrical cells
48(1)
3.2.2 Prismatic cells
49(1)
3.2.3 Battery cells as structural elements
49(2)
3.3 Construction of the Battery Module
51(5)
3.3.1 Cell connection
51(1)
3.3.2 Moisture proof
52(1)
3.3.3 Lifetime
52(1)
3.3.4 Automotive standards
52(1)
3.3.5 No further load bearing elements
53(1)
3.3.6 Thermal management
54(1)
3.3.7 Safety aspects
54(1)
3.3.8 Scalability
55(1)
3.3.9 Exchangeable single battery cells
55(1)
3.3.10 Gas channels
56(1)
3.4 Integrated Cell Supervision Circuit
56(4)
3.4.1 Balancing
57(1)
3.4.2 Mechanical integration
58(1)
3.4.3 Communication
58(1)
3.4.4 Energy saving
59(1)
3.5 Cell Connectors
60(6)
3.5.1 State of the art
60(1)
3.5.2 Electrical contact resistance
61(2)
3.5.3 Clamped cell connectors
63(2)
3.5.4 Conclusion
65(1)
3.6 Battery Thermal Management
66(11)
3.6.1 State of the art
67(7)
3.6.1.1 Air cooling for BTM
67(2)
3.6.1.2 Liquid cooling for BTM
69(1)
3.6.1.3 Phase change materials for BTM
70(1)
3.6.1.4 Heat pipe
71(1)
3.6.1.5 Thermoelectric cooler (TEC)
72(2)
3.6.2 BTM for integral single cell
74(9)
3.6.2.1 Non-uniform temperature distribution inside battery cells
74(1)
3.6.2.2 Terminal cooling
75(2)
Acknowledgment
77(1)
Bibliography
77(4)
4 Parallel Connection of Lithium-ion Cells - Purpose, Tasks and Challenges 81(20)
Alexander Fill
4.1 Introduction
81(1)
4.2 Main Issues and Challenges
82(1)
4.3 Influences on the Current Distribution
83(14)
4.3.1 Simplified model Analytical solution
84(6)
4.3.2 Effects of cell resistance and capacity variations
90(4)
4.3.3 Influence of the open circuit voltage bending
94(3)
4.4 Thermal Effects
97(1)
4.5 Aging
98(2)
Bibliography
100(1)
5 Fundamental Aspects of Reconfigurable Batteries: Efficiency Enhancement and Lifetime Extension 101(20)
Nejmeddine Bouchhima
Matthias Gossen
Kai Peter Birke
5.1 Introduction
101(2)
5.2 Modeling
103(2)
5.2.1 Energy efficiency
103(4)
5.2.1.1 Energy loss
104(1)
5.2.1.2 Rest energy versus equalization energy
104(1)
5.3 Dynamic Optimization Problem
105(2)
5.4 Optimal Control
107(3)
5.4.1 Vector-based dynamic programming
107(1)
5.4.2 Complexity of the control strategy
108(2)
5.4.3 Optimal control policy
110(1)
5.5 Efficiency Enhancement
110(4)
5.5.1 Simulation setup
111(1)
5.5.2 Results
112(2)
5.6 Lifetime Enhancement
114(3)
5.6.1 Aging model
115(1)
5.6.2 Results
115(2)
5.7 Summary
117(1)
Bibliography
118(3)
6 Volume Strain in Lithium Batteries 121(20)
Jan Patrick Singer
Kai Peter Birke
6.1 Introduction
121(1)
6.2 Fundamentals of Volume Strain
121(4)
6.2.1 Intercalation
123(1)
6.2.2 Alloying
124(1)
6.2.3 Conversion
125(1)
6.3 Volume Strain on Cells Level
125(1)
6.4 Volume Strain on Systems Level
126(2)
6.5 Measurement Techniques
128(7)
6.5.1 Unpressurized
130(3)
6.5.2 Pressurized
133(2)
6.6 State Diagnostics
135(3)
6.6.1 SoH diagnostics
135(1)
6.6.2 SoC diagnostics
136(2)
Bibliography
138(3)
7 Every Day a New Battery: Aging Dependence of Internal States in Lithium-ion Cells 141(26)
Severin Hahn
Kai Peter Birke
7.1 Operation and Degradation Processes in the Electrode State Diagram
141(14)
7.1.1 Introduction
141(1)
7.1.2 Absolute potentials and the electrode state diagram
142(2)
7.1.3 Charge and discharge
144(1)
7.1.4 Charge and discharge limits
145(1)
7.1.5 Combined electrode reactions
146(2)
7.1.6 Anodic side reactions - Growth of solid electrolyte interface (SEI)
148(3)
7.1.7 Cathodic side reactions - Possible formation of solid permeable interface (SPI)
151(1)
7.1.8 Transition metal dissolution
152(2)
7.1.9 Loss of active material
154(1)
7.2 Experimental Verification and Analysis Techniques
155(6)
7.2.1 Loss of anode active material
156(1)
7.2.2 Loss of active lithium
157(1)
7.2.3 Loss of cathode active lithium
158(1)
7.2.4 The principle of limitation
158(1)
7.2.5 Example of an aged cell
159(1)
7.2.6 Inhomogeneities and limitations in real cells
160(1)
7.3 Conclusion
161(2)
Bibliography
163(4)
8 Thermal Propagation 167(20)
Sascha Koch
8.1 Introduction
167(1)
8.2 Process of Thermal Propagation
167(5)
8.2.1 Thermal runaway
167(2)
8.2.2 Propagation
169(2)
8.2.3 Resulting effects
171(1)
8.3 Testing
172(9)
8.3.1 Relevance
172(1)
8.3.2 Trigger methods
172(2)
8.3.3 Measurement equipment and methods
174(3)
8.3.4 Experiment setup and conditions
177(1)
8.3.5 Analyzing the results
178(3)
8.4 Influencing Variables
181(3)
8.4.1 Cell format
181(1)
8.4.2 Energy density
182(1)
8.4.3 System design
183(1)
Bibliography
184(3)
9 Potential of Capacitive Effects in Lithium-ion Cells 187(36)
Alexander Uwe Schmid
Kai Peter Birke
9.1 Brief Introduction to the Principles of Electrostatic and Electrochemical Storage
187(4)
9.1.1 Double-layer capacitance
188(2)
9.1.2 Intercalation
190(1)
9.1.3 Pseudocapacitance
190(1)
9.2 Similarities and Differences between Capacitors and Lithium-ion Cells
191(4)
9.2.1 Carbons as electrode material
192(1)
9.2.2 The solid electrolyte interface
193(1)
9.2.3 Summary
194(1)
9.3 Methods of Measurement of Capacitive Effects
195(10)
9.3.1 Electrochemical impedance spectroscopy
195(8)
9.3.1.1 Modeling approaches based on equivalent circuit elements
196(7)
9.3.2 Cyclic voltammetry
203(1)
9.3.3 Current pulse method
204(1)
9.3.4 Summary
205(1)
9.4 Utilization of Capacitive Effects in Li-ion Cells
205(11)
9.4.1 Li-ion cell development
205(1)
9.4.2 Li-ion capacitor
206(1)
9.4.3 Estimation of DL capacitance on cell level
207(4)
9.4.4 Potential on the system level
211(5)
9.5 Conclusion and Outlook
216(1)
Nomenclature
217(3)
Bibliography
220(3)
10 Battery Recycling: Focus on Li-ion Batteries 223(16)
Daniel Horn
Jorg Zimmermann
Andrea Gassmann
Rudolf Stauber
Oliver Gutfleisch
10.1 Battery Materials and their Supply
223(4)
10.2 Motivation for Battery Recycling and Legal Framework in Europe
227(1)
10.3 Available Recycling Technologies
228(6)
10.3.1 Pre-processing treatments
229(2)
10.3.2 Pyro- and hydrometallurgy for extraction
231(3)
10.4 Electrohydraulic Fragmentation, an Innovative Recycling Process for Battery Recycling
234(2)
10.5 Outlook
236(1)
Bibliography
236(3)
11 Power-to-X Conversion Technologies 239(24)
Friedrich-Wilhelm Speckmann
Kai Peter Birke
11.1 Definition of Power-to-X
239(1)
11.2 Potential of Cross-Sectoral Applications
239(5)
11.3 Power-to-X as a Primary Battery
244(1)
11.4 Power-to-Gas
244(8)
11.4.1 Hydrogen generation
245(1)
11.4.2 Electrolytic hydrogen generation
245(5)
11.4.2.1 Thermochemical hydrogen generation
248(1)
11.4.2.2 Photochemical hydrogen generation
249(1)
11.4.3 Methanation
250(2)
11.4.3.1 Catalytic/chemical methanation
250(1)
11.4.3.2 Biological methanation
251(1)
11.4.3.3 Plasma-based methanation
251(1)
11.5 Power-to-Liquid
252(4)
11.5.1 Technological overview
252(3)
11.5.2 Carbon sources
255(1)
11.6 Power-to-Solid
256(2)
11.7 Basic Gas Management Systems
258(1)
11.8 Sustainable Energy Chains - Closing Remarks
259(1)
Bibliography
260(3)
Epilogue 263(12)
Acknowledgments 275(2)
Index 277