Preface |
|
xv | |
List of Contributors |
|
xvii | |
List of Figures |
|
xxi | |
List of Tables |
|
xxvii | |
List of Abbreviations |
|
xxix | |
1 Bisbenzoxazine-Bismaleimide Blends: Thermal Studies |
|
1 | (26) |
|
|
|
|
|
1 | (12) |
|
|
13 | (4) |
|
|
13 | (1) |
|
1.2.2 Synthesis of Bis(3,4-Dihydro-2H-3-Phenyl-1, 3-Benzoxazinyl) Isopropane (BAB) |
|
|
13 | (1) |
|
1.2.3 Synthesis of 2,2-Bis(4-Nitrophenoxyphenyl) Propane (DN-BPAPCNB) |
|
|
14 | (1) |
|
1.2.4 Preparation of 2,2-Bis(4-Aminophenoxy Phenyl) Propane (DA-BPAPCNB) |
|
|
14 | (1) |
|
1.2.5 Preparation of Bisamic Acid (BAX) |
|
|
15 | (1) |
|
1.2.6 Preparation of 2,2-Bis[ 4-(4-Maleimidophenoxy Phenyl)]propane (EXBMI) |
|
|
16 | (1) |
|
1.2.7 Blending of the Materials |
|
|
16 | (1) |
|
1.2.8 Polymerization of the Materials |
|
|
16 | (1) |
|
|
16 | (1) |
|
1.2.10 Differential Scanning Calorimetric (DSC) Studies |
|
|
17 | (1) |
|
1.2.11 Thermogravimetric (TG) Studies |
|
|
17 | (1) |
|
1.3 Results and Discussion |
|
|
17 | (6) |
|
|
17 | (3) |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (3) |
2 Studies on Thermosetting Resin Blends: Bispropargyl Ether-Bismaleimide |
|
27 | (32) |
|
|
|
|
|
27 | (19) |
|
2.1.1 Thermosetting Resins |
|
|
27 | (1) |
|
2.1.2 High Performance Thermosets |
|
|
28 | (1) |
|
|
29 | (2) |
|
2.1.4 Acetylene-terminated Resins (ATRs) |
|
|
31 | (1) |
|
2.1.5 Propargyl-terminated Resins (PTRs) |
|
|
32 | (2) |
|
2.1.6 Property Enhancement in PT Resins |
|
|
34 | (1) |
|
|
35 | (11) |
|
|
46 | (2) |
|
2.2.1 Preparation of BPEBPA, BMIM, and BMIE |
|
|
46 | (1) |
|
2.2.2 Blending of Bispropargyl Ether of Bisphenol-A with BMIM and BMIE |
|
|
47 | (1) |
|
2.2.3 Thermal Curing of the Materials |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
2.3 Results and Discussion |
|
|
48 | (7) |
|
|
48 | (1) |
|
|
49 | (3) |
|
|
52 | (3) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
56 | (3) |
3 Synthesis, Characterization, Magnetic, Thermal and Electrochemical Studies of Oxovanadium(IV) Complex of 2-thiophenecarba Benzhydrazone |
|
59 | (14) |
|
|
|
60 | (1) |
|
|
60 | (2) |
|
3.2.1 Physical Measurements |
|
|
60 | (1) |
|
|
61 | (1) |
|
3.2.3 Synthesis of Ligand |
|
|
61 | (1) |
|
3.2.3.1 Synthesis of 2-thiophenecarba benzhydrazone |
|
|
61 | (1) |
|
3.2.4 Synthesis of Complex |
|
|
61 | (1) |
|
3.2.4.1 Preparation of 2-thiophenecarba benzhydrazonato oxovanadium(IV) |
|
|
61 | (1) |
|
3.3 Results and Discussion |
|
|
62 | (7) |
|
3.3.1 Characterization of the Ligand (2-Thiophenecarba Benzhydrazone) |
|
|
62 | (1) |
|
3.3.2 Characterization of the Complex |
|
|
63 | (6) |
|
3.3.3 Proposed Structure of the Complex |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
70 | (3) |
4 Sorption and Desorption Analyses of Sorbents for Oil-spill Control |
|
73 | (28) |
|
|
|
|
74 | (7) |
|
4.1.1 Pollution-prevention Application of Polymers |
|
|
75 | (1) |
|
4.1.2 Problem of Oil Spill |
|
|
76 | (5) |
|
4.2 Factors Affecting the Performance of Sorbents |
|
|
81 | (2) |
|
4.3 Sorption and Desorption Kinetics |
|
|
83 | (12) |
|
|
83 | (3) |
|
|
86 | (3) |
|
4.3.3 Sorption-desorption Analysis of Polyurethane Foam |
|
|
89 | (6) |
|
|
95 | (1) |
|
|
95 | (6) |
5 Polyhexahydrotriazines: Synthesis and Thermal Studies |
|
101 | (20) |
|
|
|
|
|
101 | (10) |
|
|
101 | (1) |
|
5.1.2 Classification based on Thermal Behavior |
|
|
102 | (1) |
|
5.1.3 Thermosetting Polymer |
|
|
102 | (2) |
|
5.1.4 Thermoset Materials |
|
|
104 | (7) |
|
5.1.4.1 Phenol formaldehyde |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
5.1.4.2 Urea-formaldehyde resin |
|
|
105 | (1) |
|
5.1.4.3 Melamine formaldehyde resin |
|
|
106 | (1) |
|
5.1.4.4 Unsaturated polyester resin |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
5.1.4.7 Bispropargyl ethers |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
5.1.4.10 Polyhexahydrotriazine |
|
|
110 | (1) |
|
|
111 | (2) |
|
5.2.1 Preparation of Hemiaminal Using 4,4'-Methylenedianiline (HA-MDA) |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
113 | (1) |
|
5.3 Results and Discussion |
|
|
113 | (5) |
|
|
113 | (2) |
|
|
115 | (3) |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
119 | (2) |
6 Influence of Cement Behavior with and without Polymer Nano Composites |
|
121 | (22) |
|
|
|
|
122 | (9) |
|
|
131 | (3) |
|
6.2.1 Tests on Cement Mortar |
|
|
132 | (2) |
|
|
134 | (1) |
|
6.4 Discussions of Test Results |
|
|
134 | (5) |
|
6.4.1 Physical Characteristics |
|
|
136 | (1) |
|
6.4.2 Dispersion Mechanism |
|
|
137 | (2) |
|
6.4.3 Compressive Strength |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
139 | (4) |
7 Effect of Structure of Diphenol on Polymerization of Bis(isoimide) |
|
143 | (28) |
|
|
|
|
|
|
|
143 | (17) |
|
7.1.1 High-performance Thermosetting Resin |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
7.1.4 Unsaturated Polyester Resins |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
|
146 | (1) |
|
7.1.9 Cyanate Ester Resins |
|
|
147 | (1) |
|
|
147 | (2) |
|
7.1.10.1 Allyl functional phenols |
|
|
148 | (1) |
|
7.1.10.2 Bisoxazoline phenols |
|
|
148 | (1) |
|
7.1.10.3 Phenolic resins epoxy systems |
|
|
149 | (1) |
|
|
149 | (2) |
|
7.1.11.1 Classification of polyimides |
|
|
150 | (1) |
|
7.1.11.2 Properties of polyimide |
|
|
150 | (1) |
|
7.1.12 Bismaleimides (BMIs) |
|
|
151 | (2) |
|
|
153 | (2) |
|
|
155 | (1) |
|
|
155 | (1) |
|
7.1.16 Maleimide and Isomaleimide |
|
|
156 | (4) |
|
|
160 | (2) |
|
|
160 | (1) |
|
7.2.2 Preparation of Bis(isoimide) of 4,4'-Methylene Dianiline |
|
|
160 | (1) |
|
7.2.3 Blending of Bisphenols with Bis(isoimide) (VS) |
|
|
160 | (1) |
|
|
161 | (1) |
|
7.2.5 Fourier-transform Infrared (FTIR) Studies |
|
|
161 | (1) |
|
7.2.6 Differential Scanning Calorimetric (DSC) Studies |
|
|
162 | (1) |
|
7.2.7 Thermogravimetric (TG) Studies |
|
|
162 | (1) |
|
7.3 Results and Discussion |
|
|
162 | (5) |
|
7.3.1 Fourier-transform Infrared Studies |
|
|
162 | (1) |
|
7.3.2 Differential Scanning Calorimetric Studies |
|
|
163 | (3) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
168 | (3) |
8 Natural Fiber Based Bio-materials: A Review on Processing, Characterization and Applications |
|
171 | (22) |
|
|
|
|
171 | (4) |
|
8.1.1 Particle Reinforced Composite |
|
|
172 | (1) |
|
8.1.2 Fiber-reinforced Composite |
|
|
173 | (1) |
|
8.1.2.1 Continuous fiber composite |
|
|
173 | (1) |
|
8.1.2.2 Discontinuous fiber composite |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
8.2 Classification Based on Matrix Materials |
|
|
175 | (1) |
|
8.2.1 Metal Matrix Composite |
|
|
175 | (1) |
|
8.2.2 Ceramic Matrix Composite |
|
|
175 | (1) |
|
8.2.3 Polymer Matrix Composite |
|
|
176 | (1) |
|
8.3 Natural Fiber Reinforced Polymer Composites |
|
|
176 | (8) |
|
|
177 | (1) |
|
|
177 | (1) |
|
8.3.3 Fabrication Methods |
|
|
177 | (5) |
|
|
178 | (3) |
|
8.3.3.2 Compression moulding |
|
|
181 | (1) |
|
8.3.3.3 Injection moulding |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
182 | (1) |
|
8.3.4 Structure of Natural Fiber |
|
|
182 | (2) |
|
|
184 | (3) |
|
8.4.1 Mechanical Characterization |
|
|
184 | (1) |
|
8.4.2 Thermal Characterization |
|
|
185 | (1) |
|
8.4.3 Water Absorption Properties |
|
|
186 | (1) |
|
8.4.4 Tribological Behavior |
|
|
187 | (1) |
|
8.5 Application of Natural Fiber Reinforced Polymer Composite |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (4) |
9 Tribological Performance of Polymer Composite Materials |
|
193 | (54) |
|
|
|
|
193 | (6) |
|
9.2 Tribological Characterization Techniques for Polymer Composites |
|
|
199 | (2) |
|
9.3 Preparation of Polymer Nanocomposites |
|
|
201 | (2) |
|
9.4 Tribology Study of Different Polymer Nanocomposites |
|
|
203 | (25) |
|
9.4.1 Metallic Nanoparticles-based Polymer Nanocomposites |
|
|
218 | (1) |
|
9.4.2 Nanometal Oxide-based Polymer Nanocomposites |
|
|
219 | (1) |
|
9.4.3 Nanoclay-based Polymer Nanocomposites |
|
|
220 | (1) |
|
9.4.4 Carbon Nanotube-based Polymer Nanocomposites |
|
|
221 | (1) |
|
9.4.5 Graphene-based Polymer Nanocomposites |
|
|
222 | (1) |
|
9.4.6 Fullerenes-based Polymer Nanocomposites |
|
|
223 | (1) |
|
9.4.7 Nanodiamonds-based Polymer Nanocomposites |
|
|
224 | (4) |
|
|
228 | (1) |
|
|
228 | (19) |
10 Computational Modeling and Theoretical Strategies for the Design of Chiral Recognition Sites Using Molecular Imprinting Technology |
|
247 | (16) |
|
|
|
|
|
247 | (3) |
|
10.1.1 Enantiomeric Sensing System Tailored by Molecular Imprinting Technology |
|
|
248 | (2) |
|
10.1.2 Computational Modeling |
|
|
250 | (1) |
|
10.2 Theoretical and Computational Strategies in MIPs |
|
|
250 | (8) |
|
|
258 | (1) |
|
|
258 | (5) |
11 Ultrafast Characterization 2D Semiconducting TMDC for Nanoelectronics Application |
|
263 | (32) |
|
|
|
|
|
|
|
|
263 | (1) |
|
11.2 Ultrafast Characterization Process |
|
|
264 | (1) |
|
11.3 Ultrafast Characterization Techniques |
|
|
265 | (1) |
|
11.3.1 Ultrafast Transient Absorption |
|
|
265 | (1) |
|
11.3.2 Time-resolved Photo Electron Spectroscopy |
|
|
265 | (1) |
|
|
266 | (1) |
|
11.5 Two-Dimensional Semiconductors |
|
|
266 | (1) |
|
11.6 Direct and Indirect Band Gaps |
|
|
267 | (1) |
|
11.7 Transition Metal Dichalgogenide |
|
|
267 | (2) |
|
11.8 Preparation of Transition Metal Dichalcogenides |
|
|
269 | (13) |
|
11.8.1 Exfoliation Method for 2D Transition Metal Dichalcogenide |
|
|
269 | (1) |
|
11.8.2 Chemical Vapor Deposition for Two-dimensional Transition Metal Dichalcogenide |
|
|
270 | (1) |
|
11.8.3 Characterization of Transition Metal Dichalcogenide |
|
|
271 | (7) |
|
11.8.3.1 Optical properties |
|
|
271 | (1) |
|
|
271 | (2) |
|
11.8.3.3 Photoluminescence (PL) evaluation |
|
|
273 | (1) |
|
11.8.3.4 Electrical property |
|
|
274 | (3) |
|
11.8.3.5 Electrical transport property |
|
|
277 | (1) |
|
11.8.3.6 Electrical performance |
|
|
277 | (1) |
|
11.8.4 Different Types of TMDC Materials |
|
|
278 | (2) |
|
11.8.4.1 Ultrafast process in MoS2 |
|
|
278 | (1) |
|
11.8.4.2 Ultrafast process in WSe2 |
|
|
279 | (1) |
|
|
280 | (2) |
|
11.8.5.1 Digital electronic devices |
|
|
281 | (1) |
|
11.8.5.2 TMDC transistors |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (13) |
Index |
|
295 | (2) |
About the Editors |
|
297 | |