Preface |
|
xxix | |
Acknowledgments |
|
xxxv | |
Chapter 1 Introduction to the Book |
|
1 | (40) |
|
1.1 Overview of Finite-Set Statistics |
|
|
4 | (21) |
|
1.1.1 The Philosophy of Finite-Set Statistics |
|
|
4 | (6) |
|
1.1.2 Misconceptions About Finite-Set Statistics |
|
|
10 | (6) |
|
1.1.3 The Measurement-to-Track Association Approach |
|
|
16 | (2) |
|
1.1.4 The Random Finite Set (RFS) Approach |
|
|
18 | (6) |
|
1.1.5 Extension to Nontraditional Measurements |
|
|
24 | (1) |
|
1.2 Recent Advances in Finite-Set Statistics |
|
|
25 | (11) |
|
1.2.1 Advances in Conventional PHD and CPHD Filters |
|
|
26 | (1) |
|
1.2.2 Multitarget Smoothers |
|
|
26 | (1) |
|
1.2.3 PHD and CPHD Filters for Unknown Backgrounds |
|
|
27 | (1) |
|
1.2.4 PHD Filters for Nonpoint Targets |
|
|
28 | (1) |
|
1.2.5 Advances in Classical Multi-Bernoulli Filters |
|
|
29 | (1) |
|
1.2.6 RFS Filters for "Raw-Data" Sensors |
|
|
30 | (1) |
|
1.2.7 Theoretical Advances |
|
|
31 | (1) |
|
1.2.8 Advances in Fusing Nontraditional Measurements |
|
|
32 | (1) |
|
1.2.9 Advances Toward Fully Unified Systems |
|
|
33 | (3) |
|
1.3 Organization of the Book |
|
|
36 | (5) |
I Elements of Finite-Set Statistics |
|
41 | (120) |
|
Chapter 2 Random Finite Sets |
|
|
43 | (16) |
|
|
43 | (1) |
|
2.1.1 Organization of the Chapter |
|
|
43 | (1) |
|
2.2 Single-Sensor, Single-Target Statistics |
|
|
44 | (6) |
|
|
44 | (1) |
|
2.2.2 State Spaces and Measurement Spaces |
|
|
45 | (1) |
|
2.2.3 Random States and Measurements, Probability-Mass Functions, and Probability Densities |
|
|
46 | (1) |
|
2.2.4 Target Motion Models and Markov Densities |
|
|
47 | (1) |
|
2.2.5 Measurement Models and Likelihood Functions |
|
|
47 | (1) |
|
2.2.6 Nontraditional Measurements |
|
|
48 | (1) |
|
2.2.7 The Single-Sensor, Single-Target Bayes Filter |
|
|
48 | (2) |
|
2.3 Random Finite Sets (RFSs) |
|
|
50 | (5) |
|
2.3.1 RFSs and Point Processes |
|
|
51 | (2) |
|
|
53 | (1) |
|
2.3.3 Algebraic Properties of RFSs |
|
|
54 | (1) |
|
2.4 Multiobject Statistics in a Nutshell |
|
|
55 | (4) |
|
Chapter 3 Multiobject Calculus |
|
|
59 | (22) |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
60 | (1) |
|
|
60 | (1) |
|
3.2.3 Functional Transformations |
|
|
61 | (1) |
|
3.2.4 Multiobject Density Functions |
|
|
62 | (1) |
|
|
62 | (2) |
|
3.4 Multiobject Differential Calculus |
|
|
64 | (5) |
|
3.4.1 Gateaux Directional Derivatives |
|
|
65 | (1) |
|
3.4.2 Volterra Functional Derivatives |
|
|
66 | (1) |
|
|
67 | (2) |
|
3.5 Key Formulas of Multiobject Calculus |
|
|
69 | (12) |
|
3.5.1 Fundamental Theorem of Multiobject Calculus |
|
|
70 | (1) |
|
3.5.2 Change of Variables Formula for Set Integrals |
|
|
71 | (1) |
|
3.5.3 Set Integrals on Joint Spaces |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
3.5.14 Clark's General Chain Rule |
|
|
78 | (3) |
|
Chapter 4 Multiobject Statistics |
|
|
81 | (26) |
|
|
81 | (1) |
|
4.2 Basic Multiobject Statistical Descriptors |
|
|
81 | (17) |
|
4.2.1 Belief-Mass Functions |
|
|
83 | (1) |
|
4.2.2 Multiobject Probability Density Functions |
|
|
84 | (1) |
|
4.2.3 Convolution and Deconvolution |
|
|
85 | (1) |
|
4.2.4 Probability Generating Functionals (p.g.fl.'s) |
|
|
86 | (2) |
|
4.2.5 Multivariate p.g.fl.'s |
|
|
88 | (4) |
|
4.2.6 Cardinality Distributions |
|
|
92 | (1) |
|
4.2.7 Probability Generating Functions (p.g.f.'s) |
|
|
92 | (1) |
|
4.2.8 Probability Hypothesis Densities (PHDs) |
|
|
93 | (2) |
|
4.2.9 Factorial Moment Density |
|
|
95 | (1) |
|
4.2.10 Equivalence of the Fundamental Descriptors |
|
|
95 | (1) |
|
4.2.11 Radon-NikodSim Formulas |
|
|
96 | (1) |
|
4.2.12 Campbell's Theorems |
|
|
96 | (2) |
|
4.3 Important Multiobject Processes |
|
|
98 | (5) |
|
|
98 | (1) |
|
4.3.2 Identical, Independently Distributed Cluster (i.i.d.c.) RFSs |
|
|
99 | (1) |
|
|
100 | (1) |
|
4.3.4 Multi-Bernoulli RFSs |
|
|
101 | (2) |
|
|
103 | (4) |
|
|
103 | (1) |
|
|
104 | (3) |
|
Chapter 5 Multiobject Modeling and Filtering |
|
|
107 | (32) |
|
|
107 | (1) |
|
5.2 The Multisensor-Multitarget Bayes Filter |
|
|
108 | (2) |
|
5.3 Multitarget Bayes Optimality |
|
|
110 | (2) |
|
5.4 RFS Multitarget Motion Models |
|
|
112 | (1) |
|
5.5 RFS Multitarget Measurement Models |
|
|
113 | (4) |
|
5.6 Multitarget Markov Densities |
|
|
117 | (1) |
|
5.7 Multisensor-Multitarget Likelihood Functions |
|
|
118 | (2) |
|
5.8 The Multitarget Bayes Filter in p.g.fl. Form |
|
|
120 | (2) |
|
5.8.1 The p.g.fl. Time Update Equation |
|
|
120 | (1) |
|
5.8.2 The p.g.fl. Measurement Update Equation |
|
|
121 | (1) |
|
5.9 The Factored Multitarget Bayes Filter |
|
|
122 | (3) |
|
5.10 Approximate Multitarget Filters |
|
|
125 | (14) |
|
5.10.1 The p.g.fl. Time Update for Independent Targets |
|
|
126 | (2) |
|
5.10.2 The p.g.fl. Measurement Update for Independent Measurements |
|
|
128 | (1) |
|
5.10.3 A Principled Approximation Methodology |
|
|
129 | (1) |
|
5.10.4 Poisson Approximation: PHD Filters |
|
|
130 | (2) |
|
5.10.5 i.i.d.c. Approximation: CPHD Filters |
|
|
132 | (2) |
|
5.10.6 Multi-Bernoulli Approximation: Multi-Bernoulli Filters |
|
|
134 | (2) |
|
5.10.7 Bernoulli Approximation: Bernoulli Filters |
|
|
136 | (3) |
|
Chapter 6 Multiobject Metrology |
|
|
139 | (22) |
|
|
139 | (1) |
|
6.2 Multiobject Miss Distance |
|
|
140 | (13) |
|
6.2.1 Multiobject Miss Distance: A History |
|
|
141 | (3) |
|
6.2.2 The Optimal Sub-Pattern Assignment (OSPA) Metric |
|
|
144 | (3) |
|
6.2.3 Extension of OSPA to Covariance (COSPA) |
|
|
147 | (2) |
|
6.2.4 OSPA for Labeled Tracks (LOSPA) |
|
|
149 | (3) |
|
6.2.5 Temporal OSPA (TOSPA) |
|
|
152 | (1) |
|
6.3 Multiobject Information Functionals |
|
|
153 | (10) |
|
6.3.1 Csiszar Information Functionals |
|
|
154 | (3) |
|
6.3.2 Csiszar Functionals for Poisson Processes |
|
|
157 | (1) |
|
6.3.3 Csiszar Functionals for i.i.d.c. Processes |
|
|
158 | (3) |
II RFS Filters: Standard Measurement Model |
|
161 | (340) |
|
Chapter 7 Introduction to Part II |
|
|
163 | (18) |
|
7.1 Summary of Major Lessons Learned |
|
|
164 | (1) |
|
7.2 Standard Multitarget Measurement Model |
|
|
165 | (8) |
|
7.2.1 Standard Multitarget Measurement Submodels |
|
|
166 | (1) |
|
7.2.2 Standard Multitarget Measurement Model: p.g.fl. and Likelihood |
|
|
167 | (1) |
|
7.2.3 Standard Multitarget Measurement Model: Special Cases |
|
|
168 | (1) |
|
7.2.4 Measurement-to-Track Association (MTA) |
|
|
169 | (4) |
|
7.2.5 Relationship Between the MTA and RFS Approaches |
|
|
173 | (1) |
|
7.3 An Approximate Standard Likelihood Function |
|
|
173 | (1) |
|
7.4 Standard Multitarget Motion Model |
|
|
174 | (4) |
|
7.5 Standard Motion Model with Target Spawning |
|
|
178 | (1) |
|
7.6 Organization of Part II |
|
|
178 | (3) |
|
Chapter 8 Classical PHD and CPHD Filters |
|
|
181 | (36) |
|
|
181 | (2) |
|
8.1.1 Summary of Major Lessons Learned |
|
|
181 | (2) |
|
8.1.2 Organization of the Chapter |
|
|
183 | (1) |
|
|
183 | (6) |
|
8.2.1 General PHD Filter: Motion Modeling |
|
|
185 | (1) |
|
8.2.2 General PHD Filter: Predictor |
|
|
186 | (1) |
|
8.2.3 General PHD Filter: Measurement Modeling |
|
|
187 | (1) |
|
8.2.4 General PHD Filter: Corrector |
|
|
188 | (1) |
|
8.3 Arbitrary-Clutter PHD Filter |
|
|
189 | (2) |
|
8.3.1 Time Update Equations for the Arbitrary-Clutter Classical PHD Filter |
|
|
189 | (1) |
|
8.3.2 Measurement Modeling for the Arbitrary-Clutter Classical PHDFilter |
|
|
189 | (1) |
|
8.3.3 Arbitrary-Clutter PHD Filter: Corrector |
|
|
190 | (1) |
|
|
191 | (10) |
|
8.4.1 Classical PHD Filter: Predictor |
|
|
192 | (1) |
|
8.4.2 Classical PHD Filter: Measurement Modeling |
|
|
192 | (1) |
|
8.4.3 Classical PHD Filter: Corrector |
|
|
193 | (1) |
|
8.4.4 Classical PHD Filter: State Estimation |
|
|
194 | (1) |
|
8.4.5 Classical PHD Filter: Uncertainty Estimation |
|
|
195 | (1) |
|
8.4.6 Classical PHD Filter: Characteristics |
|
|
195 | (6) |
|
8.5 Classical Cardinalized PHD (CPHD) Filter |
|
|
201 | (11) |
|
8.5.1 Classical CPHD Filter Motion Modeling |
|
|
202 | (1) |
|
8.5.2 Classical CPHD Filter: Predictor |
|
|
202 | (2) |
|
8.5.3 Classical CPHD Filter: Measurement Modeling |
|
|
204 | (1) |
|
8.5.4 Classical CPHD Filter: Corrector |
|
|
205 | (3) |
|
8.5.5 Classical CPHD Filter: State Estimation |
|
|
208 | (1) |
|
8.5.6 Classical CPHD Filter: Characteristics |
|
|
208 | (2) |
|
8.5.7 Approximate Classical CPHD Filter |
|
|
210 | (2) |
|
8.6 Zero False Alarms (ZFA) CPHD Filter |
|
|
212 | (3) |
|
8.6.1 Comparison of the PHD and ZFA-CPHD Filters |
|
|
213 | (2) |
|
8.7 PHD Filter for State-Dependent Poisson Clutter |
|
|
215 | (2) |
|
Chapter 9 Implementing Classical PHD/CPHD Filters |
|
|
217 | (60) |
|
|
217 | (2) |
|
9.1.1 Summary of Major Lessons Learned |
|
|
217 | (1) |
|
9.1.2 Organization of the Chapter |
|
|
218 | (1) |
|
9.2 "Spooky Action at a Distance" |
|
|
219 | (2) |
|
9.3 Merging and Splitting for PHD Filters |
|
|
221 | (2) |
|
9.3.1 Merging for PHD Filters |
|
|
221 | (1) |
|
9.3.2 Splitting for PHD Filters |
|
|
222 | (1) |
|
9.4 Merging and Splitting for CPHD Filters |
|
|
223 | (3) |
|
9.4.1 Merging for CPHD Filters |
|
|
223 | (1) |
|
9.4.2 Splitting for CPHD Filters |
|
|
224 | (2) |
|
9.5 Gaussian Mixture (GM) Implementation |
|
|
226 | (35) |
|
9.5.1 Standard GM Implementation |
|
|
227 | (1) |
|
9.5.2 Pruning Gaussian Components |
|
|
228 | (1) |
|
9.5.3 Merging Gaussian Components |
|
|
229 | (2) |
|
|
231 | (13) |
|
|
244 | (6) |
|
9.5.6 Implementation with Nonconstant pp |
|
|
250 | (1) |
|
9.5.7 Implementation with Partially Uniform Target Births |
|
|
251 | (6) |
|
9.5.8 Implementation with Target Identity |
|
|
257 | (4) |
|
9.6 Sequential Monte Carlo (SMC) Implementation |
|
|
261 | (16) |
|
|
262 | (1) |
|
|
263 | (4) |
|
|
267 | (2) |
|
9.6.4 Using Measurements to Choose New Particles |
|
|
269 | (6) |
|
9.6.5 Implementation with Target Identity |
|
|
275 | (2) |
|
Chapter 10 Multisensor PHD and CPHD Filters |
|
|
277 | (34) |
|
|
277 | (2) |
|
10.1.1 Summary of Major Lessons Learned |
|
|
277 | (1) |
|
10.1.2 Organization of the Chapter |
|
|
278 | (1) |
|
10.2 The Multisensor-Multitarget Bayes Filter |
|
|
279 | (2) |
|
10.3 The General Multisensor PHD Filter |
|
|
281 | (2) |
|
10.3.1 General Multisensor PHD Filter: Modeling |
|
|
281 | (1) |
|
10.3.2 General Multisensor PHD Filter: Update |
|
|
282 | (1) |
|
10.4 The Multisensor Classical PHD Filter |
|
|
283 | (4) |
|
10.4.1 Implementations of the Exact Classical Multisensor PHD Filter |
|
|
287 | (1) |
|
10.5 Iterated-Corrector Multisensor PHD/CPHD Filters |
|
|
287 | (2) |
|
10.5.1 Limitations of the Iterated-Corrector Approach |
|
|
288 | (1) |
|
10.6 Parallel Combination Multisensor PHD and CPHD Filters |
|
|
289 | (11) |
|
10.6.1 Parallel Combination Multisensor CPHD Filter |
|
|
293 | (3) |
|
10.6.2 Parallel Combination Multisensor PHD Filter |
|
|
296 | (3) |
|
10.6.3 Simplified PCAM-PHD Filter |
|
|
299 | (1) |
|
10.7 An Erroneous "Averaged" Multisensor PHD Filter |
|
|
300 | (6) |
|
10.8 Performance Comparisons |
|
|
306 | (5) |
|
Chapter 11 Jump-Markov PHD/CPHD Filters |
|
|
311 | (40) |
|
|
311 | (4) |
|
11.1.1 Summary of Major Lessons Learned |
|
|
313 | (1) |
|
11.1.2 Organization of the Chapter |
|
|
314 | (1) |
|
11.2 Jump-Markov Filters: A Review |
|
|
315 | (3) |
|
11.2.1 The Jump-Markov Bayes Recursive Filter |
|
|
316 | (1) |
|
11.2.2 State Estimation for Jump-Markov Filters |
|
|
317 | (1) |
|
11.3 Multitarget Jump-Markov Systems |
|
|
318 | (2) |
|
11.3.1 What Is a Multitarget Jump-Markov System? |
|
|
318 | (2) |
|
11.3.2 The Multitnrget Jump-Markov Filter |
|
|
320 | (1) |
|
11.4 Jump-Markov PHD Filter |
|
|
320 | (4) |
|
11.4.1 Jump-Markov PHD Filter: Models |
|
|
321 | (1) |
|
11.4.2 Jump-Markov PHD Filter: Time Update |
|
|
322 | (1) |
|
11.4.3 Jump-Markov PHD Filter: Measurement Update |
|
|
323 | (1) |
|
11.4.4 Jump-Markov PHD Filter: State Estimation |
|
|
324 | (1) |
|
11.5 Jump-Markov CPHD Filter |
|
|
324 | (5) |
|
11.5.1 Jump-Markov CPHD Filter: Modeling |
|
|
325 | (1) |
|
11.5.2 Jump-Markov CPHD Filter: Time Update |
|
|
325 | (1) |
|
11.5.3 Jump-Markov CPHD Filter: Measurement Update |
|
|
326 | (3) |
|
11.5.4 Jump-Markov CPHD Filter: State Estimation |
|
|
329 | (1) |
|
11.6 Variable State Space Jump-Markov CPHD Filters |
|
|
329 | (11) |
|
11.6.1 Variable State Space CPHD Filters: Modeling |
|
|
331 | (2) |
|
11.6.2 Variable State Space CPHD Filters: Time Update |
|
|
333 | (2) |
|
11.6.3 Variable State Space CPHD Filters: Measurement Update |
|
|
335 | (3) |
|
11.6.4 Variable State Space CPHD Filters: State Estimation |
|
|
338 | (2) |
|
11.7 Implementing Jump-Markov PHD/CPHD Filters |
|
|
340 | (6) |
|
11.7.1 Gaussian Mixture Jump-Markov PHD/CPHD Filters |
|
|
340 | (6) |
|
11.7.2 Particle Implementation of Jump-Markov PHD and CPHD Filters |
|
|
346 | (1) |
|
11.8 Implemented Jump-Markov PHD/CPHD Filters |
|
|
346 | (5) |
|
11.8.1 Jump-Markov PHD Filter of Pasha et al. |
|
|
347 | (1) |
|
11.8.2 IMM-Type JM-PHD Filter of Punithakumar et al. |
|
|
347 | (1) |
|
11.8.3 Best-Fitting-Gaussian PHD Filter of Wenling Li and Yingmin Jia |
|
|
348 | (1) |
|
11.8.4 JM-CPHD Filter of Georgescu et al. |
|
|
349 | (1) |
|
11.8.5 Current Statistical Model (CSM) PHD Filter of Mengjun et al. |
|
|
349 | (1) |
|
11.8.6 The Variable State Space CPHD Filter of Chen et al. |
|
|
350 | (1) |
|
Chapter 12 Joint Tracking and Sensor-Bias Estimation |
|
|
351 | (28) |
|
|
351 | (7) |
|
12.1.1 Example: "Gridlocking" of Sensor Platforms |
|
|
352 | (4) |
|
12.1.2 Gridlocking in General |
|
|
356 | (1) |
|
12.1.3 Summary of Major Lessons Learned |
|
|
356 | (1) |
|
12.1.4 Organization of the Chapter |
|
|
357 | (1) |
|
12.2 Modeling Sensor Biases |
|
|
358 | (1) |
|
12.3 Optimal Joint Tracking and Registration |
|
|
359 | (6) |
|
12.3.1 Optimal BURT Filter: Single-Filter Version |
|
|
360 | (2) |
|
12.3.2 Optimal BURT Filter: Two-Filter Version |
|
|
362 | (2) |
|
12.3.3 Optimal BURT Procedure |
|
|
364 | (1) |
|
|
365 | (7) |
|
12.4.1 BURT-PHD Filter: Single-Sensor Case |
|
|
366 | (5) |
|
12.4.2 BURT-PHD Filter: Multisensor Case Using Iterated Corrector |
|
|
371 | (1) |
|
12.4.3 BURT-PHD Filter: Multisensor Case Using Parallel Combination |
|
|
372 | (1) |
|
12.5 Single-Filter BURT-PHD Filters |
|
|
372 | (4) |
|
12.5.1 Single-Filter BURT-PHD Filter for Static Biases |
|
|
372 | (3) |
|
12.5.2 A Heuristic Single-Filter BURT-PHD Filter |
|
|
375 | (1) |
|
12.6 Implemented BURT-PHD Filters |
|
|
376 | (3) |
|
12.6.1 The BURT-PHD Filter of Ristic and Clark |
|
|
377 | (1) |
|
12.6.2 The BURT-PHD Filter of Lian et al. |
|
|
377 | (2) |
|
Chapter 13 Multi-Bernoulli Filters |
|
|
379 | (26) |
|
|
379 | (3) |
|
13.1.1 Summary of Major Lessons Learned |
|
|
380 | (1) |
|
13.1.2 Organization of the Chapter |
|
|
381 | (1) |
|
13.2 The Bernoulli Filter |
|
|
382 | (6) |
|
13.2.1 Bernoulli Filter: Modeling |
|
|
383 | (1) |
|
13.2.2 Bernoulli Filter: Time-Update |
|
|
384 | (1) |
|
13.2.3 Bernoulli Filter: Measurement Update |
|
|
384 | (1) |
|
13.2.4 Bernoulli Filter: State Estimation |
|
|
385 | (1) |
|
13.2.5 Bernoulli Filter: Error Estimation |
|
|
386 | (1) |
|
13.2.6 The Bernoulli Filter as an Exact PHD Filter |
|
|
386 | (1) |
|
13.2.7 Bernoulli Filter: Practical Implementation |
|
|
387 | (1) |
|
13.2.8 Bernoulli Filter: Implementations |
|
|
388 | (1) |
|
13.3 The Multisensor Bernoulli Filter |
|
|
388 | (2) |
|
|
390 | (9) |
|
13.4.1 CBMeMBer Filter: Modeling |
|
|
392 | (1) |
|
13.4.2 CBMeMBer Filter: Predictor |
|
|
392 | (1) |
|
13.4.3 CBMeMBer Filter: Corrector |
|
|
393 | (2) |
|
13.4.4 CBMeMBer Filter: Merging and Pruning |
|
|
395 | (1) |
|
13.4.5 CBMeMBer Filter: State and Error Estimation |
|
|
395 | (1) |
|
13.4.6 CBMeMBer Filter: Track Management |
|
|
396 | (1) |
|
13.4.7 CBMeMBer Filter: Gaussian-Mixture and Particle Implementation |
|
|
397 | (1) |
|
13.4.8 CBMeMBer Filter: Performance |
|
|
397 | (2) |
|
13.5 Jump-Markov CBMeMBer Filter |
|
|
399 | (6) |
|
13.5.1 Jump-Markov CBMeMBer Filter: Modeling |
|
|
399 | (1) |
|
13.5.2 Jump-Markov CBMeMBer Filter: Predictor |
|
|
400 | (1) |
|
13.5.3 Jump-Markov CBMeMBer Filter: Corrector |
|
|
401 | (2) |
|
13.5.4 Jump-Markov CBMeMBer Filter: Performance |
|
|
403 | (2) |
|
Chapter 14 RFS Multitarget Smoothers |
|
|
405 | (30) |
|
|
405 | (3) |
|
14.1.1 Summary of Major Lessons Learned |
|
|
406 | (2) |
|
14.1.2 Organization of the Chapter |
|
|
408 | (1) |
|
14.2 Single-Target Forward-Backward Smoother |
|
|
408 | (6) |
|
14.2.1 Derivation of Forward-Backward Smoother |
|
|
409 | (1) |
|
14.2.2 Vo-Vo Alternative Form of the Forward-Backward Smoother |
|
|
410 | (2) |
|
14.2.3 Vo-Vo Exact Closed-Form GM Forward-Backward Smoother |
|
|
412 | (2) |
|
14.3 General Multitarget Forward-Backward Smoother |
|
|
414 | (2) |
|
14.4 Bernoulli Forward-Backward Smoother |
|
|
416 | (5) |
|
14.4.1 Bernoulli Forward-Backward Smoother: Modeling |
|
|
417 | (1) |
|
14.4.2 Bernoulli Forward-Backward Smoother: Equations |
|
|
417 | (3) |
|
14.4.3 Bernoulli Forward-Backward Smoother: Exact GM Implementation |
|
|
420 | (1) |
|
14.4.4 Bernoulli Forward-BackWard Smoother: Results |
|
|
421 | (1) |
|
14.5 PHD Forward-Backward Smoother |
|
|
421 | (12) |
|
14.5.1 PHD Forward-Backward Smoother Equation |
|
|
422 | (2) |
|
14.5.2 Derivation of the PHD Forward-Backward Smoother |
|
|
424 | (2) |
|
14.5.3 Fast Particle-PHD Forward-Backward Smoother |
|
|
426 | (3) |
|
14.5.4 Alternative PHD Forward-Backward Smoother |
|
|
429 | (1) |
|
14.5.5 Gaussian-Mixture PHD Smoother |
|
|
430 | (1) |
|
14.5.6 Implementations of the PHD Forward-Backward Smoother |
|
|
431 | (2) |
|
|
433 | (2) |
|
Chapter 15 Exact Closed-Form Multitarget Filter |
|
|
435 | (66) |
|
|
435 | (10) |
|
15.1.1 Exact Closed-Form Solution of the Single-Target Bayes Filter |
|
|
437 | (3) |
|
15.1.2 Exact Closed-Form Solution of the Multitarget Bayes Filter |
|
|
440 | (2) |
|
15.1.3 Overview of the Vo-Vo Filter Approach |
|
|
442 | (2) |
|
15.1.4 Summary of Major Lessons Learned |
|
|
444 | (1) |
|
15.1.5 Organization of the Chapter |
|
|
445 | (1) |
|
|
445 | (4) |
|
|
446 | (1) |
|
15.2.2 Labeled Multitarget State Sets |
|
|
447 | (1) |
|
15.2.3 Set Integrals for Labeled Multitarget States |
|
|
448 | (1) |
|
15.3 Examples of Labeled RFSs |
|
|
449 | (16) |
|
15.3.1 Labeled i.i.d.c. RFSs |
|
|
449 | (4) |
|
15.3.2 Labeled Poisson RFSs |
|
|
453 | (1) |
|
15.3.3 Labeled Multi-Bernoulli (LMB) RFSs |
|
|
453 | (5) |
|
15.3.4 Generalized Labeled Multi-Bernoulli (GLMB) RFSs |
|
|
458 | (7) |
|
15.4 Modeling for the Vo-Vo Filter |
|
|
465 | (16) |
|
15.4.1 Labeling Conventions |
|
|
465 | (3) |
|
15.4.2 Overview of the Vo-Vo Filter |
|
|
468 | (4) |
|
15.4.3 Basic Motion and Measurement Models |
|
|
472 | (1) |
|
15.4.4 Motion and Measurement Models with Target ID |
|
|
473 | (1) |
|
15.4.5 The Labeled Multitarget Likelihood Function |
|
|
474 | (2) |
|
15.4.6 The Labeled Multitarget Markov Density-Standard Version |
|
|
476 | (4) |
|
15.4.7 Labeled Multitarget Markov Density-Modified |
|
|
480 | (1) |
|
15.5 Closure of Multitarget Bayes Filter |
|
|
481 | (15) |
|
15.5.1 A "Road Map" for the Derivations |
|
|
482 | (3) |
|
15.5.2 Closure Under Measurement Update with Respect to Vo-Vo Priors |
|
|
485 | (4) |
|
15.5.3 Closure Under Time Update with Respect to Vo-Vo Priors |
|
|
489 | (7) |
|
15.6 Implementation of the Vo-Vo Filter: Sketch |
|
|
496 | (3) |
|
15.6.1 δ-GLMB Distributions |
|
|
496 | (2) |
|
15.6.2 δ-GLMB Version of the Vo-Vo Filter |
|
|
498 | (1) |
|
15.6.3 Characterization of Pruning |
|
|
498 | (1) |
|
|
499 | (4) |
|
15.7.1 Gaussian Mixture Implementation of Vo-Vo Filter |
|
|
499 | (1) |
|
15.7.2 Particle Implementation of the Vo-Vo Filter |
|
|
500 | (1) |
III RFS Filters for Unknown Backgrounds |
|
501 | (144) |
|
Chapter 16 Introduction to Part III |
|
|
503 | (16) |
|
|
505 | (1) |
|
16.2 Overview of the Approach |
|
|
506 | (2) |
|
16.3 Models for Unknown Backgrounds |
|
|
508 | (9) |
|
16.3.1 A Model for Unknown Detection Profile |
|
|
509 | (2) |
|
16.3.2 A General Model for Unknown Clutter |
|
|
511 | (3) |
|
16.3.3 Unknown-Clutter Models: Poisson-Mixture |
|
|
514 | (1) |
|
16.3.4 Unknown-Clutter Models: General Bernoulli |
|
|
515 | (1) |
|
16.3.5 Unknown-Clutter Models: Simplified Bernoulli |
|
|
516 | (1) |
|
16.4 Organization of Part III |
|
|
517 | (2) |
|
Chapter 17 RFS Filters for Unknown PD |
|
|
519 | (32) |
|
|
519 | (4) |
|
17.1.1 Converting RFS Filters into pp-Agnostic Filters |
|
|
520 | (1) |
|
17.1.2 A Motion Model for Probability of Detection |
|
|
521 | (1) |
|
17.1.3 Summary of Major Lessons Learned |
|
|
522 | (1) |
|
17.1.4 Organization of the Chapter |
|
|
523 | (1) |
|
|
523 | (5) |
|
17.2.1 pD-CPHD Filter Models |
|
|
523 | (1) |
|
17.2.2 pp-CPHD Filter Time Update |
|
|
524 | (1) |
|
17.2.3 pp-CPHD Filter Measurement Update |
|
|
525 | (2) |
|
17.2.4 pD-CPHD Filter Multitarget State Estimation |
|
|
527 | (1) |
|
17.3 Beta-Gaussian Mixture (BGM) Approximation |
|
|
528 | (6) |
|
17.3.1 Overview of the BGM Approach |
|
|
529 | (1) |
|
17.3.2 Beta-Gaussian Mixtures (BGMs) |
|
|
530 | (1) |
|
17.3.3 Pruning BGM Components |
|
|
531 | (1) |
|
17.3.4 Merging BGM Components |
|
|
532 | (2) |
|
17.4 BGM Implementation of the pp-PHD Filter |
|
|
534 | (6) |
|
17.4.1 BGM pD-PHD Filter Modeling Assumptions |
|
|
534 | (2) |
|
17.4.2 BGM pD-PHD Filter Time Update |
|
|
536 | (2) |
|
17.4.3 BGM pD-PHD Filter Measurement Update |
|
|
538 | (1) |
|
17.4.4 BGM pD-PHD Filter Multitarget State Estimation |
|
|
539 | (1) |
|
17.5 BGM Implementation of the pD-CPHD Filter |
|
|
540 | (6) |
|
17.5.1 BGM pD-CPHD Filter Modeling Assumptions |
|
|
540 | (1) |
|
17.5.2 BGM pD-CPHD Filter Time Update |
|
|
541 | (2) |
|
17.5.3 BGM pD-CPHD Filter Measurement Update |
|
|
543 | (3) |
|
17.5.4 BGM pD-CPHD Filter Multitarget State Estimation |
|
|
546 | (1) |
|
17.6 The pD-CBMeMBer Filter |
|
|
546 | (3) |
|
17.7 Implementations of pD-Agnostic RFS Filters |
|
|
549 | (2) |
|
Chapter 18 RFS Filters for Unknown Clutter |
|
|
551 | (94) |
|
|
551 | (4) |
|
18.1.1 Summary of Major Lessons Learned |
|
|
552 | (2) |
|
18.1.2 Organization of the Chapter |
|
|
554 | (1) |
|
18.2 A General Model for Unknown Bernoulli Clutter |
|
|
555 | (5) |
|
18.2.1 The General Joint Target-Clutter Model |
|
|
556 | (2) |
|
18.2.2 Phenomenology-Nonintermixing Motion Model |
|
|
558 | (1) |
|
18.2.3 Phenomenology-Intermixing Motion Model |
|
|
558 | (2) |
|
18.3 CPHD Filter for General Bernoulli Clutter |
|
|
560 | (11) |
|
18.3.1 General Bernoulli Clutter-Generator Model: CPHD Filter Time Update |
|
|
563 | (1) |
|
18.3.2 General Bernoulli Clutter Model: CPHD Filter Measurement Update |
|
|
564 | (2) |
|
18.3.3 General Bernoulli Clutter-Generator Model: PHD Filter Special Case |
|
|
566 | (1) |
|
18.3.4 General Bernoulli Clutter Model: Multitarget State Estimation |
|
|
566 | (3) |
|
18.3.5 General Bernoulli Clutter-Generator Model: Clutter Estimation |
|
|
569 | (2) |
|
|
571 | (14) |
|
18.4.1 λ-CPHD Filter: Models |
|
|
572 | (2) |
|
18.4.2 λ-CPHD Filter: Time Update |
|
|
574 | (1) |
|
18.4.3 λ-CPHD Filter: Measurement Update |
|
|
575 | (1) |
|
18.4.4 λ-CPHD Filter: Multitarget State Estimation |
|
|
576 | (1) |
|
18.4.5 λ-CPHD Filter: Clutter Estimation |
|
|
577 | (1) |
|
18.4.6 Special Case: The k-PHD Filter |
|
|
578 | (1) |
|
18.4.7 λ-CPHD Filter Implementation: Gaussian Mixtures |
|
|
579 | (6) |
|
|
585 | (32) |
|
18.5.1 k-CPHD Filter: Models |
|
|
586 | (1) |
|
18.5.2 k-CPHD Filter: Time Update |
|
|
587 | (2) |
|
18.5.3 k-CPHD Filter: Measurement Update |
|
|
589 | (1) |
|
18.5.4 k-CPHD Filter: Multitarget State Estimation |
|
|
590 | (1) |
|
18.5.5 k-CPHD Filter: Clutter Estimation |
|
|
591 | (2) |
|
18.5.6 Special Case: The k-PHD Filter |
|
|
593 | (1) |
|
18.5.7 k-CPHD Filter: Beta-Gaussian Mixtures |
|
|
594 | (9) |
|
18.5.8 k-CPHD Filter Implementation: Normal-Wishart Mixtures |
|
|
603 | (14) |
|
18.6 Multisensor k-CPHD Filters |
|
|
617 | (4) |
|
18.6.1 Iterated-Corrector k-CPHD Filter |
|
|
617 | (1) |
|
18.6.2 Parallel-Combination k-CPHD Filter |
|
|
617 | (4) |
|
18.7 The K-CBMeMBer Filter |
|
|
621 | (7) |
|
18.7.1 k-CBMeMBer Filter: Modeling |
|
|
622 | (2) |
|
18.7.2 k-CBMeMBer Filter: Time Update |
|
|
624 | (1) |
|
18.7.3 k-CBMeMBer Filter: Measurement Update |
|
|
625 | (2) |
|
18.7.4 k-CBMeMBer Filter: Multitarget State Estimation |
|
|
627 | (1) |
|
18.7.5 k-CBMeMBer Filter: Clutter Estimation |
|
|
627 | (1) |
|
18.8 Implemented Clutter-Agnostic RFS Filters |
|
|
628 | (3) |
|
18.8.1 Implemented λ-CPHD Filter |
|
|
628 | (1) |
|
18.8.2 "Bootstrap" λ-CPHD Filter |
|
|
629 | (1) |
|
18.8.3 Implemented λ-CBMeMBer Filter |
|
|
630 | (1) |
|
18.8.4 Implemented NWM-PHD Filter |
|
|
631 | (1) |
|
18.9 Clutter-Agnostic Pseudofilters |
|
|
631 | (5) |
|
18.9.1 The λ-PHD Pseudofilter |
|
|
632 | (3) |
|
18.9.2 Pathological Behavior of the λ-PHD Pseudofilter |
|
|
635 | (1) |
|
18.10 CPHD/PHD Filters with Poisson-Mixture Clutter |
|
|
636 | (5) |
|
18.10.1 Poisson-Mixture Clutter-Agnostic CPHD Filter |
|
|
638 | (2) |
|
18.10.2 Poisson-Mixture Clutter-Agnostic PHD Filter |
|
|
640 | (1) |
|
|
641 | (6) |
|
8.11.1 Decoupled Target-Clutter PHD Filter |
|
|
642 | (1) |
|
18.11.2 The "Dual PHD" Filter |
|
|
643 | (1) |
|
|
644 | (1) |
IV RFS Filters for Nonstandard Measurement Models |
|
645 | (180) |
|
Chapter 19 RFS Filters for Superpositional Sensors |
|
|
647 | (24) |
|
|
647 | (7) |
|
19.1.1 Examples of Superpositional Sensor Models |
|
|
648 | (5) |
|
19.1.2 Summary of Major Lessons Learned |
|
|
653 | (1) |
|
19.1.3 Organization of the Chapter |
|
|
653 | (1) |
|
19.2 Exact Superpositional CPHD Filter |
|
|
654 | (2) |
|
19.3 Hauschildt's Approximation |
|
|
656 | (5) |
|
19.3.1 Hauschildt Σ-CPHD Filter: Overview |
|
|
656 | (2) |
|
19.3.2 Hauschildt Σ-CPHD Filter: Models |
|
|
658 | (1) |
|
19.3.3 Hauschildt Σ-CPHD Filter: Measurement Update |
|
|
658 | (3) |
|
19.3.4 Hauschildt Σ-CPHD Filter: Implementations |
|
|
661 | (1) |
|
19.4 Thouin-Nannuru-Coates (TNC) Approximation |
|
|
661 | (10) |
|
19.4.1 Generalized TNC Approximation: Overview |
|
|
662 | (4) |
|
19.4.2 TNC Σ-CPHD Filter: Models |
|
|
666 | (1) |
|
19.4.3 TNC Σ-CPHD Filter: Measurement Update |
|
|
666 | (2) |
|
19.4.4 TNC Σ-CPHD Filter: Implementations |
|
|
668 | (3) |
|
Chapter 20 US Filters for Pixelized Images |
|
|
671 | (14) |
|
|
671 | (2) |
|
20.1.1 Summary of Major Lessons Learned |
|
|
672 | (1) |
|
20.1.2 Organization of the Chapter |
|
|
672 | (1) |
|
20.2 The IO Multitarget Measurement Model |
|
|
673 | (3) |
|
|
676 | (1) |
|
|
676 | (1) |
|
|
677 | (2) |
|
20.5.1 IO-MeMBer Filter: Measurement Update |
|
|
677 | (1) |
|
20.5.2 IO-MeMBer Filter: Track Merging |
|
|
678 | (1) |
|
20.5.3 IO-MeMBer Filter: Multitarget State Estimation |
|
|
678 | (1) |
|
20.5.4 IO-MeMBer Filter: Track Management |
|
|
678 | (1) |
|
20.6 Implementations of IO-MeMBer Filters |
|
|
679 | (6) |
|
20.6.1 Track-Before-Detect (TBD) in Image Data |
|
|
679 | (1) |
|
20.6.2 Tracking in Color Videos |
|
|
680 | (3) |
|
20.6.3 Tracking Road-Constrained Targets |
|
|
683 | (2) |
|
Chapter 21 RFS Filters for Cluster-Type Targets |
|
|
685 | (72) |
|
|
685 | (6) |
|
21.1.1 Summary of Major Lessons Learned |
|
|
688 | (2) |
|
21.1.2 Organization of the Chapter |
|
|
690 | (1) |
|
21.2 Extended-Target Measurement Models |
|
|
691 | (5) |
|
21.2.1 The Statistics of Extended Targets |
|
|
692 | (1) |
|
21.2.2 Exact Rigid-Body (ERB) Model |
|
|
692 | (2) |
|
21.2.3 Approximate Rigid-Body (ARB) Model |
|
|
694 | (1) |
|
21.2.4 Approximate Poisson-Body (APB) Model |
|
|
695 | (1) |
|
21.3 Extended-Target Bernoulli Filters |
|
|
696 | (2) |
|
21.3.1 Extended-Target Bernoulli Filters: Performance |
|
|
698 | (1) |
|
21.4 Extended-Target PHD/CPHD Filters |
|
|
698 | (18) |
|
21.4.1 General Extended-Target PHD Filter |
|
|
699 | (1) |
|
21.4.2 PHD Filter for Extended Targets: ERB Model |
|
|
700 | (1) |
|
21.4.3 PHD Filter for Extended Targets: APB Model |
|
|
700 | (16) |
|
21.5 Extended-Target CPHD Filter: APB Model |
|
|
716 | (4) |
|
21.5.1 APB-CPHD Filter: Theory |
|
|
717 | (1) |
|
21.5.2 Gaussian Mixture APB-CPHD Filter: Performance |
|
|
718 | (1) |
|
21.5.3 Gamma Gaussian Inverse-Wishart APB-CPHD Filter: Performance |
|
|
719 | (1) |
|
21.5.4 APB-CPHD Filter of Lian et al.: Performance |
|
|
719 | (1) |
|
21.6 Cluster-Target Measurement Model |
|
|
720 | (2) |
|
21.6.1 Likelihood Function for Cluster Targets |
|
|
720 | (1) |
|
21.6.2 Estimation of Soft Clusters |
|
|
721 | (1) |
|
21.7 Cluster-Target PHD and CPHD Filters |
|
|
722 | (2) |
|
21.7.1 Cluster-Target CPHD Filter |
|
|
722 | (2) |
|
21.7.2 Cluster-Target PHD Filter |
|
|
724 | (1) |
|
21.8 Measurement Models for Level-1 Group Targets |
|
|
724 | (10) |
|
21.8.1 "Natural" State Representation of Single Level-1 Group Targets |
|
|
725 | (1) |
|
21.8.2 "Natural" State Representation of Multiple Level-1 Group Targets |
|
|
726 | (2) |
|
21.8.3 Simplified State Representation of Multiple Level-1 Group Targets |
|
|
728 | (4) |
|
21.8.4 Multiple Level-1 Group Targets with the Standard Measurement Model |
|
|
732 | (2) |
|
21.9 PHD/CPHD Filters for Level-1 Group Targets |
|
|
734 | (9) |
|
21.9.1 PHD Filter for Level-1 Group Targets: Standard Model |
|
|
734 | (2) |
|
21.9.2 CPHD Filter for Level-1 Group Targets: Standard Model |
|
|
736 | (1) |
|
21.9.3 PHD Filter for Single Level-1 Group Targets: Standard Measurement Model |
|
|
736 | (6) |
|
21.9.4 CPHD Filter for Single Level-1 Group Targets: Standard Model |
|
|
742 | (1) |
|
21.10 Measurement Models for General Group Targets |
|
|
743 | (4) |
|
21.10.1 Simplified State Representation of Level-l Group Targets |
|
|
744 | (2) |
|
21.10.2 Standard Measurement Model for Level-l Group Targets |
|
|
746 | (1) |
|
21.11 PHD/CPHD Filters for Level-l Group Targets |
|
|
747 | (1) |
|
21.12 A Model for Unresolved Targets |
|
|
748 | (4) |
|
21.13 Motion Model for Unresolved Targets |
|
|
752 | (1) |
|
21.14 The Unresolved-Target PHD Filter |
|
|
752 | (2) |
|
21.15 Approximate Unresolved-Target PHD Filter |
|
|
754 | (1) |
|
21.16 Approximate Unresolved-Target CPHD Filter |
|
|
754 | (3) |
|
Chapter 22 RFS Filters for Ambiguous Measurements |
|
|
757 | (68) |
|
|
757 | (7) |
|
22.1.1 Motivation: Quantized Measurements |
|
|
758 | (1) |
|
22.1.2 Generalized Measurements, Measurement Models, and Likelihoods |
|
|
759 | (2) |
|
22.1.3 Summary of Major Lessons Learned |
|
|
761 | (3) |
|
22.1.4 Organization of the Chapter |
|
|
764 | (1) |
|
22.2 Random Set Models of Ambiguous Measurements |
|
|
764 | (11) |
|
22.2.1 Imprecise Measurements |
|
|
765 | (1) |
|
22.2.2 Vague Measurements |
|
|
765 | (4) |
|
22.2.3 Uncertain Measurements |
|
|
769 | (4) |
|
22.2.4 Contingent Measurements (Inference Rules) |
|
|
773 | (1) |
|
22.2.5 Generalized Fuzzy Measurements |
|
|
774 | (1) |
|
22.3 Generalized Likelihood Functions (GLFs) |
|
|
775 | (8) |
|
22.3.1 GLFs for Nonnoisy Nontraditional Measurements |
|
|
776 | (2) |
|
22.3.2 GLFs for Noisy Nontraditional Measurements |
|
|
778 | (1) |
|
22.3.3 Bayesian Processing of Generalized Measurements |
|
|
778 | (1) |
|
22.3.4 Bayes Optimality of the GLF Approach |
|
|
779 | (4) |
|
22.4 Unification of Expert-System Theories |
|
|
783 | (9) |
|
22.4.1 Bayesian Unification of Measurement Fusion |
|
|
783 | (3) |
|
22.4.2 Dempster's Rule Arises as a Particular Instance of Bayes' Rule |
|
|
786 | (3) |
|
22.4.3 Bayes-Optimal Measurement Conversion |
|
|
789 | (3) |
|
22.5 GLFs for Imperfectly Characterized Targets |
|
|
792 | (6) |
|
22.5.1 Example: Imperfectly Characterized Target Types |
|
|
793 | (1) |
|
22.5.2 Example: Received Signal Strength (RSS) |
|
|
793 | (1) |
|
22.5.3 Modeling Imperfectly Characterized Targets |
|
|
794 | (1) |
|
22.5.4 GLFs for Imperfectly Characterized Targets |
|
|
795 | (3) |
|
22.5.5 Bayes Filtering with Imperfectly Characterized Targets |
|
|
798 | (1) |
|
22.6 GLFs for Unknown Target Types |
|
|
798 | (1) |
|
22.6.1 Unmodeled Target Type |
|
|
798 | (1) |
|
22.6.2 Unmodeled Target Types-Imperfectly Characterized Measurement Function |
|
|
799 | (1) |
|
22.7 GLFs for Information with Unknown Correlations |
|
|
799 | (1) |
|
22.8 GLFs for Unreliable Information Sources |
|
|
800 | (3) |
|
22.9 Using GLFs in Multitarget Filters |
|
|
803 | (2) |
|
22.10 GLFs in RFS Multitarget Filters |
|
|
805 | (9) |
|
22.10.1 Using GLFs in PHD Filters |
|
|
805 | (2) |
|
22.10.2 Using GLFs in CPHD Filters |
|
|
807 | (2) |
|
22.10.3 Using GLFs in CBMeMBer Filters |
|
|
809 | (1) |
|
22.10.4 Using GLFs in Bernoulli Filters |
|
|
810 | (1) |
|
22.10.5 Implementations of RFS Filters for Nontraditional Measurements |
|
|
810 | (4) |
|
22.11 Using GLFs with Conventional Multitarget Filters |
|
|
814 | (13) |
|
22.11.1 Measurement-to-Track Association (MTA) with Nontraditional Measurements |
|
|
814 | (1) |
|
22.11.2 A Closed-Form Example: Fuzzy Measurements |
|
|
815 | (3) |
|
22.11.3 MTA with Joint Kinematic and Nonkinematic Measurements |
|
|
818 | (7) |
V Sensor, Platform, and Weapons Management |
|
825 | (208) |
|
Chapter 23 Introduction to Part V |
|
|
827 | (34) |
|
23.1 Basic Issues in Sensor Management |
|
|
830 | (4) |
|
23.1.1 Top-Down or Bottom-Up? |
|
|
831 | (1) |
|
23.1.2 Single-Step or Multistep? |
|
|
831 | (1) |
|
23.1.3 Information-Theoretic or Mission-Oriented? |
|
|
832 | (2) |
|
23.2 Information Theory and Intuition: An Example |
|
|
834 | (6) |
|
23.2.1 PENT for "Cookie Cutter" Sensor Fields of View (FoVs) |
|
|
835 | (2) |
|
23.2.2 PENT for General Sensor Fields of View |
|
|
837 | (2) |
|
23.2.3 Characteristics of PENT |
|
|
839 | (1) |
|
23.2.4 The Cardinality-Covariance Objective Function |
|
|
839 | (1) |
|
23.2.5 The Cauchy-Schwartz Objective Function |
|
|
840 | (1) |
|
23.3 Summary of RFS Sensor Control |
|
|
840 | (18) |
|
23.3.1 RFS Control Summary: General Approach (SingleStep) |
|
|
841 | (6) |
|
23.3.2 RFS Control Summary: Ideal Sensor Dynamics |
|
|
847 | (2) |
|
23.3.3 RFS Control Summary: Simplified Nonideal Sensor Dynamics |
|
|
849 | (3) |
|
23.3.4 RFS Control Summary: Control with PHD and CPHD Filters |
|
|
852 | (1) |
|
23.3.5 RFS Control Summary: "Pseudosensor" Approximation for Multisensor Control |
|
|
853 | (2) |
|
23.3.6 RFS Control Summary: General Approach (Multi-step) |
|
|
855 | (3) |
|
23.4 Organization of Part V |
|
|
858 | (3) |
|
Chapter 24 Single-Target Sensor Management |
|
|
861 | (28) |
|
|
861 | (2) |
|
24.1.1 Summary of Major Lessons Learned |
|
|
861 | (1) |
|
24.1.2 Organization of the Chapter |
|
|
862 | (1) |
|
24.2 Example: Missile-Tracking Cameras |
|
|
863 | (6) |
|
24.2.1 Single-Camera Missile Tracking |
|
|
863 | (4) |
|
24.2.2 Two-Camera Missile Tracking |
|
|
867 | (2) |
|
24.3 Single-Sensor, Single-Target Control: Modeling |
|
|
869 | (3) |
|
24.4 Single-Sensor, Single-Target Control: Single-Step |
|
|
872 | (1) |
|
24.5 Single-Sensor, Single-Target Control: Objective Functions |
|
|
872 | (3) |
|
24.5.1 Kullback-Leibler Information Gain |
|
|
873 | (1) |
|
24.5.2 Csiszar Information Gain |
|
|
874 | (1) |
|
24.5.3 Cauchy-Schwartz Information Gain |
|
|
874 | (1) |
|
24.6 Single-Sensor, Single-Target Control: Hedging |
|
|
875 | (2) |
|
24.6.1 Expected-Value Hedging |
|
|
875 | (1) |
|
24.6.2 Minimum-Value Hedging |
|
|
875 | (1) |
|
24.6.3 Multisample Approximate Hedging |
|
|
875 | (1) |
|
24.6.4 Single-Sample Approximate Hedging |
|
|
876 | (1) |
|
24.6.5 Mixed Expected-Value and PM Hedging |
|
|
877 | (1) |
|
24.7 Single-Sensor, Single-Target Control: Optimization |
|
|
877 | (1) |
|
24.8 Special Case 1: Ideal Sensor Dynamics |
|
|
878 | (2) |
|
24.9 Simple Example: Linear-Gaussian Case |
|
|
880 | (2) |
|
24.10 Special Case 2: Simplified Nonideal Dynamics |
|
|
882 | (7) |
|
24.10.1 Simplified Nonideal Single-Sensor Dynamics: Modeling |
|
|
883 | (2) |
|
24.10.2 Simplified Nonideal Single-Sensor Dynamics: Filtering Equations |
|
|
885 | (1) |
|
24.10.3 Simplified Nonideal Single-Sensor Dydamics:- Optimization |
|
|
886 | (3) |
|
Chapter 25 Multitarget Sensor Management |
|
|
889 | (60) |
|
|
889 | (3) |
|
25.1.1 Summary of Major Lessons Learned |
|
|
890 | (1) |
|
25.1.2 Organization of the Chapter |
|
|
891 | (1) |
|
25.2 Multitarget Control: Target and Sensor State Spaces |
|
|
892 | (3) |
|
25.2.1 Target State Spaces |
|
|
892 | (1) |
|
25.2.2 Sensor State Spaces |
|
|
893 | (1) |
|
25.2.3 Joint Multisensor-Multitarget State Space |
|
|
893 | (1) |
|
25.2.4 Integrals and Set Integrals on State Spaces |
|
|
894 | (1) |
|
25.2.5 p.g.fl.'s on Target/Sensor State Spaces |
|
|
895 | (1) |
|
25.3 Multitarget Control: Control Spaces |
|
|
895 | (1) |
|
25.4 Multitarget Control: Measurement Spaces |
|
|
896 | (4) |
|
25.4.1 Sensor Measurements |
|
|
896 | (1) |
|
25.4.2 Actuator-Sensor Measurements |
|
|
897 | (1) |
|
25.4.3 Joint Multisensor-Multitarget Measurements |
|
|
897 | (1) |
|
25.4.4 Integrals and Set Integrals on Measurement Spaces |
|
|
898 | (1) |
|
25.4.5 p.g.fl.'s on Measurement Spaces |
|
|
899 | (1) |
|
25.5 Multitarget Control: Motion Models |
|
|
900 | (3) |
|
25.5.1 Single-Target and Multitarget Motion Models |
|
|
901 | (1) |
|
25.5.2 Single-Sensor Motion and Multisensor Motion with Sensor Controls |
|
|
901 | (1) |
|
25.5.3 Joint Multisensor-Multitarget Motion |
|
|
902 | (1) |
|
25.6 Multitarget Control: Measurement Models |
|
|
903 | (5) |
|
25.6.1 Measurements: Assumptions |
|
|
904 | (1) |
|
25.6.2 Measurements: Sensor Noise |
|
|
905 | (1) |
|
25.6.3 Measurements: Fields of View (FoVs) and Clutter |
|
|
905 | (1) |
|
25.6.4 Measurements: Actuator Sensors and Transmission Failure |
|
|
906 | (1) |
|
25.6.5 Measurements: Multitarget Likelihood Functions |
|
|
907 | (1) |
|
25.6.6 Measurements: Joint Multitarget Likelihood Functions |
|
|
908 | (1) |
|
25.7 Multitarget Control: Summary of Notation |
|
|
908 | (3) |
|
25.7.1 Notation for Spaces of Interest |
|
|
908 | (2) |
|
25.7.2 Notation for Motion Models |
|
|
910 | (1) |
|
25.7.3 Notation for Measurement Models |
|
|
910 | (1) |
|
25.8 Multitarget Control: Single Step |
|
|
911 | (2) |
|
25.9 Multitarget Control: Objective Functions |
|
|
913 | (6) |
|
25.9.1 Information-Theoretic Objective Functions |
|
|
914 | (2) |
|
25.9.2 The PENT Objective Function |
|
|
916 | (1) |
|
25.9.3 The Cardinality-Variance Objective Function |
|
|
916 | (1) |
|
25.9.4 PENT as an Approximate Information-Theoretic Objective Function |
|
|
917 | (2) |
|
25.10 Multisensor-Multitarget Control: Hedging |
|
|
919 | (11) |
|
25.10.1 Hedging Using Predicted Measurement Set (PMS)? |
|
|
920 | (2) |
|
25.10.2 Predicted Ideal Measurement Set (PIMS): A General Approach |
|
|
922 | (4) |
|
25.10.3 Predicted Ideal Measurement Set (PIMS): Special Cases |
|
|
926 | (3) |
|
25.10.4 Predicted Ideal Measurement Set (DIMS): Derivation of General Approach |
|
|
929 | (1) |
|
25.11 Multisensor-Multitarget Control: Optimization |
|
|
930 | (1) |
|
25.12 Sensor Management with Ideal Sensor Dynamics |
|
|
931 | (3) |
|
25.13 Simplified Nonideal Multisensor Dynamics |
|
|
934 | (6) |
|
25.13.1 Simplified Nonideal Multisensor Dynamics: Assumptions |
|
|
934 | (2) |
|
25.13.2 Simplified Nonideal Multisensor Dynamics: Filtering Equations |
|
|
936 | (2) |
|
25.13.3 Simplified Nonideal Single-Sensor Dynamics: Hedgingand Optimization |
|
|
938 | (2) |
|
25.14 Target Prioritization |
|
|
940 | (9) |
|
25.14.1 The Concept of Tactical Significance |
|
|
941 | (1) |
|
25.14.2 Tactical Importance Functions (TIFs) and HigherLevel Fusion |
|
|
941 | (3) |
|
25.14.3 Characteristics of TIFs |
|
|
944 | (1) |
|
25.14.4 The Multitarget Statistics of TIFs |
|
|
945 | (2) |
|
25.14.5 Posterior Expected Number of Targets of Interest (PENTI) |
|
|
947 | (1) |
|
25.14.6 Biasing the Cardinality Variance to Targets of Interest (ToIs) |
|
|
948 | (1) |
|
Chapter 26 Approximate Sensor Management |
|
|
949 | (84) |
|
|
949 | (1) |
|
26.1.1 Summary of Major Lessons Learned |
|
|
949 | (1) |
|
26.1.2 Organization of the Chapter |
|
|
950 | (1) |
|
26.2 Sensor Management with Bernoulli Filters |
|
|
950 | (10) |
|
26.2.1 Sensor Management with Bernoulli Filters: Filtering Equations |
|
|
954 | (1) |
|
26.2.2 Sensor Management with Bernoulli Filters: Objective Functions |
|
|
955 | (2) |
|
26.2.3 Bernoulli Filter Control: Hedging |
|
|
957 | (2) |
|
26.2.4 Bernoulli Filter Control: Multisensor |
|
|
959 | (1) |
|
26.3 Sensor Management with PHD Filters |
|
|
960 | (29) |
|
26.3.1 Single-Sensor, Single-Step PHD Filter Control |
|
|
960 | (14) |
|
26.3.2 PHD Filter Sensor Management: Multisensor SingleStep |
|
|
974 | (15) |
|
26.4 Sensor Management with CPHD Filters |
|
|
989 | (19) |
|
26.4.1 Single-Sensor, Single-Step CPHD Filter Control |
|
|
990 | (11) |
|
26.4.2 Multisensor, Single-Step CPHD Filter Control |
|
|
1001 | (7) |
|
26.5 Sensor Management with CBMeMBer Filters |
|
|
1008 | (13) |
|
26.5.1 Single-Sensor, Single-Step CBMeMBer Filter Contro |
|
|
1008 | (7) |
|
26.5.2 Multisensor, Single-Step CBMeMBer Control |
|
|
1015 | (6) |
|
26.6 RFS Sensor Management Implementations |
|
|
1021 | (61) |
|
26.6.1 RFS Control Implementations: Multitarget Bayes Filter |
|
|
1021 | (3) |
|
26.6.2 RFS Control Implementations: Bernoulli Filters |
|
|
1024 | (1) |
|
26.6.3 RFS Control Implementations: PHD Filters |
|
|
1025 | (5) |
|
26.6.4 RFS Control Implementations: CBMeMBer Filters |
|
|
1030 | (3) |
Appendix A Glossary of Notation and Terminology |
|
1033 | (8) |
|
A.1 Transparent Notational System |
|
|
1033 | (1) |
|
|
1034 | (1) |
|
|
1035 | (1) |
|
A.4 Fuzzy Logic and Dempster-Shafer Theory |
|
|
1036 | (1) |
|
A.5 Probability and Statistics |
|
|
1036 | (2) |
|
|
1038 | (1) |
|
|
1038 | (1) |
|
A.8 Finite-Set Statistics |
|
|
1039 | (1) |
|
A.9 Generalized Measurements |
|
|
1040 | (1) |
Appendix B Bayesian Analysis of Dynamic Systems |
|
1041 | (4) |
|
B.1 Formal Bayes Modeling in General |
|
|
1041 | (2) |
|
B.2 The Bayes Filter in General |
|
|
1043 | (2) |
Appendix C Rigorous Functional Derivatives |
|
1045 | (4) |
|
C.1 Nonconstructive Definition of the Functional Derivative |
|
|
1045 | (2) |
|
C.2 The Constructive Radon-Niko4m Derivative |
|
|
1047 | (1) |
|
C.3 Constructive Definition of the Functional Derivative |
|
|
1048 | (1) |
Appendix D Partitions of Finite Sets |
|
1049 | (4) |
|
|
1049 | (1) |
|
D.2 Recursive Construction of Partitions |
|
|
1050 | (3) |
Appendix E Beta Distributions |
|
1053 | (2) |
Appendix F Markov Time Update of Beta Distributions |
|
1055 | (4) |
Appendix G Normal-Wishart Distributions |
|
1059 | (12) |
|
|
1063 | (1) |
|
|
1064 | (3) |
|
|
1067 | (3) |
|
|
1070 | (1) |
Appendix H Complex-Number Gaussian Distributions |
|
1071 | (2) |
Appendix I Statistics of Level-1 Group Targets |
|
1073 | (4) |
Appendix J FISST Calculus and Moyal's Calculus |
|
1077 | (10) |
|
J.1 A "Point Process "Functional Calculus |
|
|
1079 | (1) |
|
J.2 Volterra Functional Derivatives |
|
|
1080 | (2) |
|
J.3 Moyal's Functional Calculus of p.g.fl.'s |
|
|
1082 | (5) |
|
|
1082 | (2) |
|
J.3.2 Moyal's Functional Calculus |
|
|
1084 | (3) |
Appendix K Mathematical Derivations |
|
1087 | (2) |
References |
|
1089 | (20) |
About the Author |
|
1109 | (1) |
Index |
|
1110 | |