Muutke küpsiste eelistusi

E-raamat: Aggregation Functions

(Université du Luxembourg), (Slovenská Technická Univerzita), (Université de Paris I), (University of Novi Sad, Serbia)
  • Formaat - PDF+DRM
  • Hind: 166,72 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume is a comprehensive, rigorous, and self-contained exposition of aggregation functions, which are used when combining several numerical values into a single representative value. Classes of aggregation functions covered include triangular norms and conorms, copulas, means and averages, and those based on nonadditive integrals. The authors provide in-depth descriptions of the properties of each method (including interpretation, analysis, construction methods, and practical identification methods) and pay special attention to the nature of scales on which values to be aggregated are defined. This book is an excellent introduction to the subject for graduate students and an essential reference for researchers. Annotation ©2011 Book News, Inc., Portland, OR (booknews.com)

A rigorous and self-contained exposition of aggregation functions and their properties.

Aggregation is the process of combining several numerical values into a single representative value, and an aggregation function performs this operation. These functions arise wherever aggregating information is important: applied and pure mathematics (probability, statistics, decision theory, functional equations), operations research, computer science, and many applied fields (economics and finance, pattern recognition and image processing, data fusion, etc.). This is a comprehensive, rigorous and self-contained exposition of aggregation functions. Classes of aggregation functions covered include triangular norms and conorms, copulas, means and averages, and those based on nonadditive integrals. The properties of each method, as well as their interpretation and analysis, are studied in depth, together with construction methods and practical identification methods. Special attention is given to the nature of scales on which values to be aggregated are defined (ordinal, interval, ratio, bipolar). It is an ideal introduction for graduate students and a unique resource for researchers.

Arvustused

'Throughout the entire work, many examples and applications of aggregation are given. The presentation is abstract, formal, and mathematically rigorous, providing a firm foundation for specific applications. This book should be taken very seriously by anyone whose work involves aggregation.' Jonathan Golan, Reviews.com

Muu info

A rigorous and self-contained exposition of aggregation functions and their properties.
List of figures
x
List of tables
xii
Preface xiii
Introduction
1(10)
Main motivations and scope
1(1)
Basic definitions and examples
2(7)
Conventional notation
9(2)
Properties for aggregation
11(45)
Introduction
11(1)
Elementary mathematical properties
12(19)
Grouping-based properties
31(10)
Invariance properties
41(8)
Further properties
49(7)
Conjunctive and disjunctive aggregation functions
56(74)
Preliminaries and general notes
56(3)
Generated conjunctive aggregation functions
59(5)
Triangular norms and related conjunctive aggregation functions
64(24)
Copulas and quasi-copulas
88(12)
Disjunctive aggregation functions
100(6)
Uninorms
106(9)
Nullnorms
115(4)
More aggregation functions related to t-norms
119(4)
Restricted distributivity
123(7)
Means and averages
130(41)
Introduction and definitions
130(2)
Quasi-arithmetic means
132(7)
Generalizations of quasi-arithmetic means
139(22)
Associative means
161(2)
Means constructed from a mean value property
163(3)
Constructing means
166(2)
Further extended means
168(3)
Aggregation functions based on nonadditive integrals
171(63)
Introduction
171(1)
Set functions, capacities, and games
172(5)
Some linear transformations of set functions
177(4)
The Choquet integral
181(26)
The Sugeno integral
207(20)
Other integrals
227(7)
Construction methods
234(38)
Introduction
234(1)
Transformed aggregation functions
234(8)
Composed aggregation
242(5)
Weighted aggregation functions
247(5)
Some other aggregation-based construction methods
252(5)
Aggregation functions based on minimal dissimilarity
257(4)
Ordinal sums of aggregation functions
261(5)
Extensions to aggregation functions
266(6)
Aggregation on specific scale types
272(20)
Introduction
272(1)
Ratio scales
273(7)
Difference scales
280(4)
Interval scales
284(5)
Log-ratio scales
289(3)
Aggregation on ordinal scales
292(25)
Introduction
292(1)
Order invariant subsets
293(3)
Lattice polynomial functions and some of their properties
296(4)
Ordinal scale invariant functions
300(4)
Comparison meaningful functions on a single ordinal scale
304(4)
Comparison meaningful functions on independent ordinal scales
308(2)
Aggregation on finite chains by chain independent functions
310(7)
Aggregation on bipolar scales
317(31)
Introduction
317(2)
Associative bipolar operators
319(6)
Minimum and maximum on symmetrized linearly ordered sets
325(7)
Separable aggregation functions
332(2)
Integral-based aggregation functions
334(14)
Behavioral analysis of aggregation functions
348(34)
Introduction
348(1)
Expected values and distribution functions
348(13)
Importance indices
361(6)
Interaction indices
367(3)
Maximum improving index
370(2)
Tolerance indices
372(6)
Measures of arguments contribution and involvement
378(4)
Identification of aggregation functions
382(15)
Introduction
382(1)
General formulation
383(3)
The case of parametrized families of aggregation functions
386(2)
The case of generated aggregation functions
388(3)
The case of integral-based aggregation functions
391(5)
Available software
396(1)
Appendix A: Aggregation of infinitely many arguments
397(13)
Introduction
397(1)
Infinitary aggregation functions on sequences
397(8)
General aggregation of infinite number of inputs
405(5)
Appendix B: Examples and applications
410(10)
Main domains of applications
410(4)
A specific application: mixture of uncertainty measures
414(6)
List of symbols 420(8)
References 428(26)
Index 454
Michel Grabisch is a Professor of Computer Sciences at Université Paris I, Panthéon-Sorbonne. Jean-Luc Marichal is an Associate Professor in the Mathematics Research Unit at the University of Luxembourg. Radko Mesiar is Chairman of the Department of Mathematics and Descriptive Geometry at the Slovak University of Technology, Bratislava. Endre Pap is a Professor in the Department of Mathematics and Informatics at the University of Novi Sad, Serbia.