Muutke küpsiste eelistusi

E-raamat: Analysis on Fock Spaces

  • Formaat: PDF+DRM
  • Sari: Graduate Texts in Mathematics 263
  • Ilmumisaeg: 26-May-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441988010
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Graduate Texts in Mathematics 263
  • Ilmumisaeg: 26-May-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441988010
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Several natural Lp spaces of analytic functions have been widely studied in the past few decades, including Hardy spaces, Bergman spaces, and Fock spaces. The terms “Hardy spaces” and “Bergman spaces” are by now standard and well established. But the term “Fock spaces” is a different story.Numerous excellent books now exist on the subject of Hardy spaces. Several books about Bergman spaces, including some of the author’s, have also appeared in the past few decades. But there has been no book on the market concerning the Fock spaces. The purpose of this book is to fill that void, especially when many results in the subject are complete by now. This book presents important results and techniques summarized in one place, so that new comers, especially graduate students, have a convenient reference to the subject.This book contains proofs that are new and simpler than the existing ones in the literature. In particular, the book avoids the use of the Heisenberg group, the Fourier transform, and the heat equation. This helps to keep the prerequisites to a minimum. A standard graduate course in each of real analysis, complex analysis, and functional analysis should be sufficient preparation for the reader.

While Hardy and Bergman spaces are established subjects in the literature on analytic functions, Fock spaces remain virgin territory. This book meets the need for a focused presentation of key results and techniques and includes new and simpler proofs.

Arvustused

From the reviews:

Excellent books exist in the literature on the theory of Hardy spaces but no textbook concerning the theory of Fock spaces has appeared before. The purpose of the author is to fill this gap and provide to any researcher in the field or graduate students the appropriate place to find the results or the bibliographical references needed for their use. author succeeds with his goal. a great addition to the literature and in the future will become a classic in the field. (Jordi Pau, Mathematical Reviews, January, 2013)

This book is intended to provide a convenient reference to Fock spaces. Each chapter ends with a series of exercises. The material is presented in a pedagogical way. The reference list contains 259 relevant items. This book is well written and it is a good reference for graduate students who are interested in Fock spaces. (Atsushi Yamamori, Zentralblatt MATH, Vol. 1262, 2013)

1 Preliminaries
1(30)
1.1 Entire Functions
3(6)
1.2 Lattices in the Complex Plane
9(4)
1.3 Weierstrass σ-Functions
13(6)
1.4 Pseudodifferential Operators
19(6)
1.5 The Heisenberg Group
25(2)
1.6 Notes
27(2)
1.7 Exercises
29(2)
2 Fock Spaces
31(62)
2.1 Basic Properties
33(10)
2.2 Some Integral Operators
43(10)
2.3 Duality of Fock Spaces
53(6)
2.4 Complex Interpolation
59(4)
2.5 Atomic Decomposition
63(12)
2.6 Translation Invariance
75(6)
2.7 A Maximum Principle
81(6)
2.8 Notes
87(2)
2.9 Exercises
89(4)
3 The Berezin Transform and BMO
93(44)
3.1 The Berezin Transform of Operators
95(6)
3.2 The Berezin Transform of Functions
101(12)
3.3 Fixed Points of the Berezin Transform
113(4)
3.4 Fock-Carleson Measures
117(6)
3.5 Functions of Bounded Mean Oscillation
123(10)
3.6 Notes
133(2)
3.7 Exercises
135(2)
4 Interpolating and Sampling Sequences
137(56)
4.1 A Notion of Density
139(4)
4.2 Separated Sequences
143(8)
4.3 Stability Under Weak Convergence
151(8)
4.4 A Modified Weierstrass σ-Function
159(6)
4.5 Sampling Sequences
165(12)
4.6 Interpolating Sequences
177(10)
4.7 Notes
187(2)
4.8 Exercises
189(4)
5 Zero Sets for Fock Spaces
193(20)
5.1 A Necessary Condition
195(2)
5.2 A Sufficient Condition
197(2)
5.3 Pathological Properties
199(10)
5.4 Notes
209(2)
5.5 Exercises
211(2)
6 Toeplitz Operators
213(54)
6.1 Trace Formulas
215(6)
6.2 The Bargmann Transform
221(8)
6.3 Boundedness
229(8)
6.4 Compactness
237(8)
6.5 Toeplitz Operators in Schatten Classes
245(10)
6.6 Finite Rank Toeplitz Operators
255(8)
6.7 Notes
263(2)
6.8 Exercises
265(2)
7 Small Hankel Operators
267(20)
7.1 Small Hankel Operators
269(2)
7.2 Boundedness and Compactness
271(4)
7.3 Membership in Schatten Classes
275(6)
7.4 Finite Rank Small Hankel Operators
281(2)
7.5 Notes
283(2)
7.6 Exercises
285(2)
8 Hankel Operators
287(44)
8.1 Boundedness and Compactness
289(4)
8.2 Compact Hankel Operators with Bounded Symbols
293(8)
8.3 Membership in Schatten Classes
301(26)
8.4 Notes
327(2)
8.5 Exercises
329(2)
References 331(10)
Index 341
Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His research areas include operators on holomorphic function spaces, complex analysis, and operator theory and operator algebras.