Muutke küpsiste eelistusi

E-raamat: Applied Mining Geology

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a detailed overview of the operational principles of modern mining geology, which are presented as a good mix of theory and practice, allowing use by a broad range of specialists, from students to lecturers and experienced geologists.  The book includes comprehensive descriptions of mining geology techniques, including conventional methods and new approaches. The attributes presented in the book can be used as a reference and as a guide by mining industry specialists developing mining projects and for optimizing mining geology procedures. Applications of the methods are explained using case studies and are facilitated by the computer scripts added to the book as Electronic Supplementary Material.

1. Introduction.- PART I. MINE MAPPING AND SAMPLING.- 2. Mining Methods.- 3. Mine Mapping.- 4. Drilling Techniques and Drill Holes Logging.- 5. Sampling of the Mine Workings.- 6. Geotechnical Study.- 7. Dry Bulk Density (DBD) of Rocks.- 8. Data Points Location (surveying).- PART II. SAMPLING ERRORS.- 9. Introduction to the Theory of Sampling.- 10. Quality Control and Assurance (QAQC).- 11. Twin Holes.- 12. Database.- PART III. MINERAL RESOURCES.- 13. Data Preparation.- 14. Geological Constrains of Mineralisation.- 15. Exploratory Data Analysis.- 16. Resource Estimation Methods.- PART IV. APPLIED MINING GEOSTATISTICS.- 17. Introduction to Geostatistics.- 18. Variography.- 19. Methods of the Linear Geostatistics (Kriging).- 20. Multivariate Geostatistics.- 21. Multiple Indicator Kriging.- 22. Estimation of the Recoverable Resources.- 23. Model Review and Validation.- 24. Reconciliation with New Data.- PART V. ESTIMATING UNCERTAINTY.- 25. Grade Uncertainty.- 26. Quantitative Geologic

al Models.- PART VI. CLASSIFICATION.- 27. Principles of Classification.- 28. Methodology of the Mineral Resource Classification.- 29. Conversion Resources to Reserves.- 30. Balance Between Quantity and Quality of Samples.- PART VII. MINERAL DEPOSIT TYPES.- 31. Lode Gold Deposits.- 32. Uranium Deposits (In-Situ Leach Projects).- 33. Iron-Oxide Deposits.- 34. Bauxite Deposits.- 35. Mineral Sands.

Arvustused

Selected by Choice magazine as an Outstanding Academic Title for 2017



Abzalov, an experienced geologist, offers a wide-ranging, intensely practical volume that succinctly covers the basic sciences and methodologies of the evaluation and development of ore deposits in modern times. This reviewer recommends that no student or professional within the modern mining industry (whether scientist or business worker) should be without ready access to this essential reference volume. Summing Up: Essential. Lower-division undergraduates and above; faculty and professionals. (T. L. T. Grose, Choice, Vol. 54 (7), March, 2017)

The publication is organised in seven parts, covering various aspects of mining geology and its application to enable decision-making on mines. it does provide geologists with a good understanding to analyse the impact of decisions in drill spacing, mining unit size, uncertainty in geology and sampling, and many other variables, and todemonstrate this to the broader mining disciplines. I would recommend it as a handbook to aspiring and current mining geology professionals. (Pamela Naidoo-Ameglio, The AusIMM Bulletin, ausimmbulletin.com, December, 2016)

1 Introduction
1(4)
References
2(3)
Part I Mine Design, Mine Mapping and Sampling
2 Mining Methods
5(14)
2.1 Open Pit Mines
6(1)
2.2 Underground Mines
7(8)
2.2.1 Underground Selective Mining Methods
9(1)
2.2.2 Underground Bulk Mining Methods
10(4)
2.2.3 Mining of the Gently Dipping Ore Bodies
14(1)
2.3 Unconventional Mining
15(4)
2.3.1 In situ Leach (ISL) Technique
16(1)
2.3.2 Dredging of the Mineral Sands
16(2)
References
18(1)
3 Mine Mapping
19(20)
3.1 Mine Mapping Principles
19(1)
3.2 Mapping Open Pit Mines
20(3)
3.3 Mapping of Underground Mines
23(7)
3.4 Mapping Using Digital Photogrammetry and Laser Technologies
30(4)
3.4.1 Mapping Mining Faces Using Photogrammetry
30(3)
3.4.2 Remote Mapping of the Mines Using Laser
33(1)
3.5 Optimisation of the Mine Mapping Procedures
34(5)
References
37(2)
4 Drilling Techniques and Drill Holes Logging
39(40)
4.1 Drilling Methods
39(2)
4.2 Diamond Core Drilling
41(18)
4.2.1 Core Quality and Representativeness
45(4)
4.2.2 Orientated Core
49(5)
4.2.3 Logging Diamond Core Holes
54(4)
4.2.4 Sampling Diamond Core
58(1)
4.3 Open Hole Percussion Drilling
59(6)
4.3.1 Sampling Blastholes for Grade Control Purpose in the Open Pits
60(4)
4.3.2 Use of `Jumbo' Drilling for Delineation of Underground Stopes
64(1)
4.4 Reverse Circulation (RC) Percussion Drilling
65(4)
4.4.1 Logging RC Holes
67(2)
4.4.2 Sampling RC Holes
69(1)
4.5 Sonic Drilling Technologies
69(5)
4.5.1 Strength and Weakness of the Sonic Drilling
71(2)
4.5.2 Logging and Sampling Sonic Drill Holes
73(1)
4.6 Auger Drilling
74(2)
4.7 Rotary Drilling Using Tricone Bit
76(3)
References
76(3)
5 Sampling of the Mine Workings
79(8)
5.1 Sampling Rock Faces in the Underground Mines
79(3)
5.1.1 Channel Sampling
80(1)
5.1.2 Rock Chip Sampling
80(2)
5.2 Sampling of the Broken Ore
82(2)
5.3 Trenching and Winzing
84(3)
References
85(2)
6 Geotechnical Logging and Mapping
87(10)
6.1 Geotechnical Logging of the Drill Core
87(4)
6.1.1 Drilling Parameters and Core Recovery
88(1)
6.1.2 Rock Weathering
88(1)
6.1.3 Rock Strength
89(1)
6.1.4 Rock Quality Designation Index (RQD)
89(1)
6.1.5 Natural Breaks
90(1)
6.2 Geotechnical Mapping
91(1)
6.3 Geotechnical Applications of Rock Mass Classification Schemes
92(5)
References
95(2)
7 Dry Bulk Density (DBD) of Rocks
97(14)
7.1 Types of the Rock Densities Used in the Mining Industry
98(1)
7.2 Dry Bulk Density Measurement Techniques
98(6)
7.2.1 Competent Non-porous Rocks
98(2)
7.2.2 Porous and Weathered Rocks
100(4)
7.2.3 Non-consolidated Sediments
104(1)
7.3 Spatial Distribution of the Rock Density Measurements
104(7)
References
110(1)
8 Data Points Location (Surveying)
111(8)
8.1 Surface Points Location
112(1)
8.2 Down-Hole Survey
112(7)
Reference
115(4)
Part II Sampling Errors
9 Introduction to the Theory of Sampling
119(16)
9.1 Types of Sampling Errors
119(2)
9.2 Fundamental Sampling Error
121(8)
9.2.1 Theoretical Background
121(2)
9.2.2 Experimental Calibration of the Sampling Constants
123(5)
9.2.3 Sampling Nomogram
128(1)
9.3 Grouping -- Segregation Error
129(2)
9.4 Errors Related to the Sampling Practices
131(1)
9.5 Instrumental Errors
132(3)
References
133(2)
10 Quality Control and Assurance (QAQC)
135(26)
10.1 Accuracy Control
135(7)
10.1.1 Statistical Tests for Assessing Performance of the Standard Samples
136(4)
10.1.2 Statistical Tests for Assessing the Data Bias Using the Duplicate Samples
140(1)
10.1.3 Diagnostic Diagram: Pattern Recognition Method
140(2)
10.2 Precision Control
142(8)
10.2.1 Matching Pairs of Data
142(1)
10.2.2 Processing and Interpretation of Duplicate Samples
143(7)
10.3 Comparative Analysis of the Statistical Estimation Methods
150(4)
10.4 Guidelines for Optimisation of the Sampling Programmes
154(7)
10.4.1 Planning and Implementation of the Sampling Programmes
154(1)
10.4.2 Frequency of Inserting QAQC Material to Assay Batches
155(1)
10.4.3 Distribution of the Reference Materials
156(1)
10.4.4 Distribution of the Duplicate Samples
156(2)
References
158(3)
11 Twin Holes
161(16)
11.1 Method Overview
162(5)
11.1.1 Objectives of the Twinned Holes Study
162(1)
11.1.2 Statistical Treatment of the Results
163(1)
11.1.3 Distance Between Twinned Holes
163(1)
11.1.4 Drilling Quality and Quantity
163(2)
11.1.5 Comparison of Studied Variables
165(1)
11.1.6 Practice of Drilling Twinned Holes for Mining Geology Applications
166(1)
11.2 Case Studies
167(10)
11.2.1 Gold Deposits: Confirmation of High-Grade Intersections
168(1)
11.2.2 Twin Holes Studies in Iron Ore Deposits
169(2)
11.2.3 Mineral Sands Deposits: Validation of Historic Drilling
171(1)
11.2.4 Bauxites: Use of Twin Holes as a Routine Control of Drilling Quality
171(3)
References
174(3)
12 Database
177(10)
12.1 Construction of the Database
178(2)
12.2 Data Entry
180(2)
12.2.1 Electronic Data Transfer
180(1)
12.2.2 Keyboard Data Entry
180(1)
12.2.3 Special Values
181(1)
12.3 Management of the Data Flow
182(1)
12.4 Database Safety and Security
183(4)
References
183(4)
Part III Mineral Resources
13 Data Preparation
187(6)
13.1 Data Compositing
187(4)
13.1.1 Data Coding
187(1)
13.1.2 Compositing Algorithms
188(1)
13.1.3 Choice of the Optimal Compositing Intervals
188(2)
13.1.4 Validating of the Composited Assays
190(1)
13.2 High Grade Cut-Off
191(2)
References
192(1)
14 Geological Constraints of Mineralisation
193(14)
14.1 Introduction to Wireframing
193(2)
14.2 Characterisation of the Mineralisation Contacts
195(7)
14.2.1 Contact Profile
195(3)
14.2.2 Determining of the Cut-Off Value for Constraining Mineralisation
198(1)
14.2.3 Contact Topography
199(1)
14.2.4 Uncertainty of the Contacts
200(2)
14.3 Geometry and Internal Structure of the Mineralised Domains
202(5)
14.3.1 Unfolding
202(3)
References
205(2)
15 Exploratory Data Analysis
207(14)
15.1 Objective of the EDA
207(1)
15.2 Overview of the EDA Techniques
208(6)
15.2.1 Spider Diagram
208(1)
15.2.2 Data Declustering
208(5)
15.2.3 Q-Q Plots
213(1)
15.2.4 Box-and-Whisker Plot (Box Plot)
213(1)
15.3 Grouping and Analysis of the Data
214(3)
15.3.1 Data Types
214(2)
15.3.2 Data Generations
216(1)
15.3.3 Grouping Samples by Geological Characteristics
216(1)
15.4 Statistical Analysis of the Resource Domains
217(4)
References
219(2)
16 Resource Estimation Methods
221(12)
16.1 Polygonal Method
222(1)
16.2 Estimation by Triangulation
223(1)
16.3 Cross-Sectional Method
224(4)
16.3.1 Extrapolation of the Cross-Sections
224(2)
16.3.2 Interpolation Between Cross-Sections
226(2)
16.4 Estimation by Panels
228(1)
16.5 Inverse Distance Weighting Method
228(5)
References
230(3)
Part IV Applied Mining Geostatistics
17 Introduction to Geostatistics
233(6)
17.1 Regionalised Variable and Random Function
234(1)
17.2 Stationarity and Intrinsic Hypothesis
235(4)
References
236(3)
18 Variography
239(24)
18.1 Quantitative Analysis of the Spatial Continuity
239(1)
18.2 Intuitive Look at Variogram
240(1)
18.3 Geostatistical Definition of Variogram
241(1)
18.4 Directional, Omnidirectional and Average Variograms
242(1)
18.5 Properties of the Variograms
242(3)
18.5.1 Behaviour Near Origin
243(1)
18.5.2 Anisotropy
244(1)
18.6 Analysis of the Data Continuity Using a Variogram Map
245(2)
18.7 Presence of Drift
247(1)
18.8 Proportional Effect
247(1)
18.9 Variogram Sill and the Sample Variance
248(1)
18.10 Impact of the Different Support
249(1)
18.11 Variogram Models
249(4)
18.11.1 Common Variogram Models
249(2)
18.11.2 Modelling Geometric Anisotropy
251(1)
18.11.3 Nested Structures
252(1)
18.11.4 Modelling Zonal Anisotropy
252(1)
18.12 Troublesome Variograms
253(2)
18.12.1 Hole Effect
254(1)
18.12.2 Saw-Tooth Shaped and Erratic Variograms
254(1)
18.13 Alternative Measures of a Spatial Continuity
255(4)
18.13.1 Variograms of the Gaussian Transformed Values
256(1)
18.13.2 Relative (Normalised) Variograms
257(1)
18.13.3 Different Structural Tools
258(1)
18.14 Indicator Variograms
259(1)
18.15 Variograms in the Multivariate Environment
259(4)
18.15.1 Multivariate Geostatistical Functions
260(1)
18.15.2 Linear Model of Coregionalisation
260(1)
References
261(2)
19 Methods of the Linear Geostatistics (Kriging)
263(24)
19.1 Geostatistical Resource Estimation
263(1)
19.2 Kriging System
264(3)
19.2.1 Ordinary Kriging
265(1)
19.2.2 Simple Kriging
266(1)
19.2.3 Simple Versus Ordinary Kriging
267(1)
19.3 Properties of Kriging
267(12)
19.3.1 Exactitude Property of Kriging
267(1)
19.3.2 Negative Kriging Weights and Screening Effect
268(2)
19.3.3 Smoothing Effect
270(3)
19.3.4 Kriging Variance
273(1)
19.3.5 Conditional Bias
274(5)
19.4 Block Kriging
279(8)
19.4.1 Blocks and Point Estimates
279(1)
19.4.2 Kriging of the Small Blocks
280(6)
References
286(1)
20 Multivariate Geostatistics
287(4)
20.1 Theoretical Background of Multivariate Geostatistics
288(1)
20.1.1 Ordinary Co-kriging
288(1)
20.1.2 Collocated Co-kriging
288(1)
20.1.3 Properties of the Co-kriging
289(1)
20.2 Kriging with External Drift
289(2)
References
289(2)
21 Multiple Indicator Kriging
291(4)
21.1 Methodology of the Multiple Indicator Kriging
292(1)
21.2 Practical Notes on the Indicators Post-Processing
293(2)
References
294(1)
22 Estimation of the Recoverable Resources
295(14)
22.1 Change of Support Concept
296(2)
22.1.1 Dispersion Variance
296(1)
22.1.2 Volume Variance Relations
297(1)
22.1.3 Conditions for Change-of-Support Models
298(1)
22.2 Global Change of Support Methods
298(3)
22.2.1 Affine Correction
298(2)
22.2.2 Discrete Gaussian Change of Support
300(1)
22.3 Local Change of Support Methods
301(8)
22.3.1 Uniform Conditioning
301(1)
22.3.2 Localised Uniform Conditioning
302(4)
22.3.3 Application of the LUC Method to the Iron Ore Deposit
306(1)
References
307(2)
23 Model Review and Validation
309(6)
23.1 Validating of the Global Estimates
309(1)
23.2 Validating of the Local Estimates
310(2)
23.2.1 Validating of the Local Mean
310(2)
23.2.2 Validating by the Drill Hole Intersections
312(1)
23.2.3 Cross Validation Technique
312(1)
23.3 Validating of the Tonnage
312(3)
References
313(2)
24 Reconciliation with New Data
315(8)
24.1 Validating Using the Infill Drilling Data
315(2)
24.2 Reconciliation with the Mine Production Data
317(1)
24.3 Ore Grade Control
318(5)
24.3.1 Grade Control at the Open Pit Mine
318(1)
24.3.2 Grade Control at the Underground Mines
319(1)
References
320(3)
Part V Estimating Uncertainty
25 Grade Uncertainty
323(12)
25.1 Methods of Conditional Simulation
324(2)
25.1.1 Turning Bands
324(1)
25.1.2 Sequential Gaussian Simulation
325(1)
25.1.3 Sequential Indicator Simulation
325(1)
25.2 Application of the Conditional Simulation in the Corridor Sands Project
326(9)
25.2.1 Project Background
326(2)
25.2.2 Scope of the Conditional Simulation Study
328(1)
25.2.3 Implementation of the SGS Technique
328(1)
25.2.4 Results and Discussion
329(3)
References
332(3)
26 Quantitative Geological Models
335(16)
26.1 Geological Models
335(1)
26.2 Indicator Assisted Domaining
336(3)
26.2.1 Indicator Probability Model
337(2)
26.2.2 Structural Interpretation
339(1)
26.2.3 Boundary Conditions
339(1)
26.3 Stochastic Modelling of the Geological Structures
339(12)
26.3.1 Plurigaussian Conditional Simulation: Case Study
340(7)
References
347(4)
Part VI Classification
27 Principles of Classification
351(4)
27.1 International Reporting Systems
351(1)
27.2 Mineral Resources and Ore Reserves
351(4)
Reference
354(1)
28 Methodology of the Mineral Resource Classification
355(10)
28.1 Geostatistical Classification Methods
355(1)
28.2 Classification Related to the Mine Production Plans
356(9)
28.2.1 Classification Criteria
356(2)
28.2.2 Classification Procedures
358(2)
28.2.3 Classification Using Auxiliary Geostatistical Functions
360(3)
References
363(2)
29 Conversion Resources to Reserves
365(8)
29.1 Mining Factors
366(1)
29.2 Metallurgical Factors
366(5)
29.2.1 Metallurgical Systematics of the Ore Reserves
367(1)
29.2.2 Representativity of the Bulk Samples
367(4)
29.3 Project Economics
371(2)
References
372(1)
30 Balance Between Quantity and Quality of Samples
373(6)
30.1 Introduction to a Problem
373(1)
30.2 Geological Factor and Sampling Error
374(5)
References
375(4)
Part VII Mineral Deposit Types
31 Lode Gold Deposits
379(12)
31.1 Geology of the Orogenic Gold Deposits
380(3)
31.2 Sampling and Assaying of the Gold Deposits
383(4)
31.2.1 Samples Preparation
383(2)
31.2.2 Gold Assays
385(2)
31.2.3 Samples Quality Control
387(1)
31.3 Dry Bulk Density
387(1)
31.4 Estimation of Resources and Reserves
388(3)
31.4.1 Top Cut
388(1)
31.4.2 Classification
389(1)
References
389(2)
32 Uranium Deposits (In-Situ Leach Projects)
391(14)
32.1 Sandstone Hosted Uranium Deposits
392(1)
32.2 Resource Definition Drilling
393(2)
32.3 Geophysical Logging of the Drillholes
395(2)
32.3.1 Gamma Logging
396(1)
32.3.2 Prompt Fission Neutron (PFN) Analyser
396(1)
32.3.3 Supplementary Geophysical Techniques
397(1)
32.4 Drillhole Sample Assays
397(1)
32.5 Data Quality and Mineral Resource Categories
397(1)
32.6 Geological and Geotechnical Logging of the Drillholes
398(1)
32.6.1 Lithology
398(1)
32.6.2 Hydrogeology
398(1)
32.6.3 Permeability
399(1)
32.6.4 Porosity and Rock Density
399(1)
32.7 Resource Estimation
399(2)
32.7.1 Geological Model
399(1)
32.7.2 Estimation of Uranium Grade
400(1)
32.7.3 Geostatistical Resource Estimation
400(1)
32.8 Viability of the Resources
401(2)
32.9 Reconciliation of the Resources
403(2)
References
403(2)
33 Iron-Oxide Deposits
405(6)
33.1 Geological Constraints of the Resource Models
405(3)
33.2 Resource Estimation Drilling
408(1)
33.3 Sampling and Assaying
409(1)
33.4 Dry Bulk Density of the Rocks
409(1)
33.5 Estimation Resources and Reserves
409(2)
References
410(1)
34 Bauxite Deposits
411(16)
34.1 Geological Constraints of the Resource Models
412(5)
34.1.1 Shape of the Bauxite Plateaus
412(1)
34.1.2 Contacts
412(1)
34.1.3 Vertical Profile of the Bauxite Seams
413(2)
34.1.4 Domains
415(2)
34.2 Drilling
417(2)
34.3 Sampling and Logging Holes
419(1)
34.4 Sample Preparation and Assaying
419(2)
34.4.1 Sample Preparation
419(1)
34.4.2 Analytical Techniques
420(1)
34.4.3 Sample Quality Control
421(1)
34.5 Dry Bulk Density of the Rocks
421(1)
34.6 Estimation Bauxite Grade
422(1)
34.7 Classification
422(5)
34.7.1 Mineral Resources
422(1)
34.7.2 Conversion to Ore Reserves
422(3)
References
425(2)
35 Mineral Sands
427(8)
35.1 Geology of the Selected Deposits
428(3)
35.1.1 Fort Dauphin
428(1)
35.1.2 Corridor Sands
429(1)
35.1.3 Richard's Bay
430(1)
35.2 Drilling
431(1)
35.3 Sample Processing and Assaying
432(1)
35.4 Samples Quality Control Procedures
432(1)
35.5 Dry Bulk Density of the Rocks
432(1)
35.6 Estimation and Reporting Resources
432(3)
References
433(2)
Appendices
435(2)
Appendix 1 List of the Exercises and Electronic Files with the Solutions
435(1)
Appendix 2 Mathematical Background
435(2)
Normal Distribution
435(1)
Lognormal Distribution
436(1)
References 437(8)
Index 445
Dr Abzalov is a geologist with 35 years of experience. He has obtained his PhD in Geology studying nickel sulphide deposits in Russia and Fennoscandia and then undertaken additional post-graduate studies of Applied Mathematics at Murdoch University, Australia and Geostatistics in Fontainebleau, France. He has worked in different roles in research, exploration and mining geology, including the positions of Geology Manager Project for WMC Resources and Exploration Manager New Opportunities (Eurasia) and Group Geostatistical Consultant for Rio Tinto. 

With diverse commodity and geographical experience, encompassing five continents, Dr. Abzalov has demonstrated skills in greenfields, brownfields and resource modelling. With an innovative approach of geostatistically assisted 3D structural modelling, he has lead WMC Resources to the successful resource growth at Olympic Dam and Cliffs deposits. He was also instrumental in the discovery of the uranium resources in Jordan.