Preface |
|
xiii | |
|
MATLAB Usage and Computational Errors |
|
|
1 | (70) |
|
Basic Operations of MATLAB |
|
|
1 | (26) |
|
Input/Output of Data from MATLAB Command Window |
|
|
2 | (1) |
|
Input/Output of Data Through Files |
|
|
2 | (2) |
|
Input/Output of Data Using Keyboard |
|
|
4 | (1) |
|
|
5 | (5) |
|
|
10 | (1) |
|
|
10 | (5) |
|
Operations on Vectors and Matrices |
|
|
15 | (7) |
|
|
22 | (2) |
|
|
24 | (3) |
|
Computer Errors Versus Human Mistakes |
|
|
27 | (10) |
|
IEEE 64-bit Floating-Point Number Representation |
|
|
28 | (3) |
|
Various Kinds of Computing Errors |
|
|
31 | (2) |
|
Absolute/Relative Computing Errors |
|
|
33 | (1) |
|
|
33 | (1) |
|
Tips for Avoiding Large Errors |
|
|
34 | (3) |
|
|
37 | (34) |
|
Nested Computing for Computational Efficiency |
|
|
37 | (2) |
|
Vector Operation Versus Loop Iteration |
|
|
39 | (1) |
|
Iterative Routine Versus Nested Routine |
|
|
40 | (1) |
|
|
40 | (4) |
|
Parameter Sharing via Global Variables |
|
|
44 | (1) |
|
Parameter Passing Through Varargin |
|
|
45 | (1) |
|
Adaptive Input Argument List |
|
|
46 | (1) |
|
|
46 | (25) |
|
System of Linear Equations |
|
|
71 | (46) |
|
Solution for a System of Linear Equations |
|
|
72 | (7) |
|
The Nonsingular Case (M = N) |
|
|
72 | (1) |
|
The Underdetermined Case (M < N): Minimum-Norm Solution |
|
|
72 | (3) |
|
The Overdetermined Case (M > N): Least-Squares Error Solution |
|
|
75 | (1) |
|
RLSE (Recursive Least-Squares Estimation) |
|
|
76 | (3) |
|
Solving a System of Linear Equations |
|
|
79 | (13) |
|
|
79 | (2) |
|
|
81 | (8) |
|
Gauss--Jordan Elimination |
|
|
89 | (3) |
|
|
92 | (1) |
|
Decomposition (Factorization) |
|
|
92 | (6) |
|
LU Decomposition (Factorization): Triangularization |
|
|
92 | (5) |
|
Other Decomposition (Factorization): Cholesky, QR, and SVD |
|
|
97 | (1) |
|
Iterative Methods to Solve Equations |
|
|
98 | (19) |
|
|
98 | (2) |
|
|
100 | (3) |
|
The Convergence of Jacobi and Gauss--Seidel Iterations |
|
|
103 | (1) |
|
|
104 | (13) |
|
Interpolation and Curve Fitting |
|
|
117 | (62) |
|
Interpolation by Lagrange Polynomial |
|
|
117 | (2) |
|
Interpolation by Newton Polynomial |
|
|
119 | (5) |
|
Approximation by Chebyshev Polynomial |
|
|
124 | (5) |
|
Pade Approximation by Rational Function |
|
|
129 | (4) |
|
Interpolation by Cubic Spline |
|
|
133 | (6) |
|
Hermite Interpolating Polynomial |
|
|
139 | (2) |
|
Two-dimensional Interpolation |
|
|
141 | (2) |
|
|
143 | (7) |
|
Straight Line Fit: A Polynomial Function of First Degree |
|
|
144 | (1) |
|
Polynomial Curve Fit: A Polynomial Function of Higher Degree |
|
|
145 | (4) |
|
Exponential Curve Fit and Other Functions |
|
|
149 | (1) |
|
|
150 | (29) |
|
|
151 | (1) |
|
|
152 | (3) |
|
Interpolation by Using DFS |
|
|
155 | (2) |
|
|
157 | (22) |
|
|
179 | (30) |
|
Iterative Method Toward Fixed Point |
|
|
179 | (4) |
|
|
183 | (2) |
|
False Position or Regula Falsi Method |
|
|
185 | (1) |
|
|
186 | (3) |
|
|
189 | (2) |
|
Newton Method for a System of Nonlinear Equations |
|
|
191 | (2) |
|
Symbolic Solution for Equations |
|
|
193 | (1) |
|
|
194 | (15) |
|
|
197 | (12) |
|
Numerical Differentiation/Integration |
|
|
209 | (54) |
|
Difference Approximation for First Derivative |
|
|
209 | (2) |
|
Approximation Error of First Derivative |
|
|
211 | (5) |
|
Difference Approximation for Second and Higher Derivative |
|
|
216 | (4) |
|
Interpolating Polynomial and Numerical Differential |
|
|
220 | (2) |
|
Numerical Integration and Quadrature |
|
|
222 | (4) |
|
Trapezoidal Method and Simpson Method |
|
|
226 | (2) |
|
Recursive Rule and Romberg Integration |
|
|
228 | (3) |
|
|
231 | (3) |
|
|
234 | (7) |
|
Gauss--Legendre Integration |
|
|
235 | (3) |
|
Gauss--Hermite Integration |
|
|
238 | (1) |
|
Gauss--Laguerre Integration |
|
|
239 | (1) |
|
Gauss--Chebyshev Integration |
|
|
240 | (1) |
|
|
241 | (22) |
|
|
244 | (19) |
|
Ordinary Differential Equations |
|
|
263 | (58) |
|
|
263 | (3) |
|
Heun's Method: Trapezoidal Method |
|
|
266 | (1) |
|
|
267 | (2) |
|
Predictor--Corrector Method |
|
|
269 | (8) |
|
Adams--Bashforth--Moulton Method |
|
|
269 | (4) |
|
|
273 | (1) |
|
|
274 | (3) |
|
Vector Differential Equations |
|
|
277 | (10) |
|
|
277 | (4) |
|
Discretization of LTI State Equation |
|
|
281 | (2) |
|
High-Order Differential Equation to State Equation |
|
|
283 | (1) |
|
|
284 | (3) |
|
Boundary Value Problem (BVP) |
|
|
287 | (34) |
|
|
287 | (3) |
|
|
290 | (3) |
|
|
293 | (28) |
|
|
321 | (50) |
|
Unconstrained Optimization [ L-2, Chapter 7] |
|
|
321 | (22) |
|
|
321 | (2) |
|
Quadratic Approximation Method |
|
|
323 | (2) |
|
Nelder--Mead Method [ W-8] |
|
|
325 | (3) |
|
|
328 | (2) |
|
|
330 | (2) |
|
Conjugate Gradient Method |
|
|
332 | (2) |
|
Simulated Annealing Method [ W-7] |
|
|
334 | (4) |
|
|
338 | (5) |
|
Constrained Optimization [ L-2, Chapter 10] |
|
|
343 | (7) |
|
Lagrange Multiplier Method |
|
|
343 | (3) |
|
|
346 | (4) |
|
MATLAB Built-In Routines for Optimization |
|
|
350 | (21) |
|
Unconstrained Optimization |
|
|
350 | (2) |
|
|
352 | (3) |
|
|
355 | (2) |
|
|
357 | (14) |
|
|
371 | (30) |
|
Eigenvalues and Eigenvectors |
|
|
371 | (2) |
|
Similarity Transformation and Diagonalization |
|
|
373 | (5) |
|
|
378 | (3) |
|
|
378 | (2) |
|
|
380 | (1) |
|
Shifted Inverse Power Method |
|
|
380 | (1) |
|
|
381 | (4) |
|
Physical Meaning of Eigenvalues/Eigenvectors |
|
|
385 | (4) |
|
|
389 | (12) |
|
|
390 | (11) |
|
Partial Differential Equations |
|
|
401 | (60) |
|
|
402 | (4) |
|
|
406 | (8) |
|
The Explicit Forward Euler Method |
|
|
406 | (1) |
|
The Implicit Backward Euler Method |
|
|
407 | (2) |
|
The Crank--Nicholson Method |
|
|
409 | (3) |
|
Two-Dimensional Parabolic PDE |
|
|
412 | (2) |
|
|
414 | (6) |
|
The Explicit Central Difference Method |
|
|
415 | (2) |
|
Two-Dimensional Hyperbolic PDE |
|
|
417 | (3) |
|
Finite Element Method (FEM) for solving PDE |
|
|
420 | (9) |
|
GUI of MATLAB for Solving PDEs: PDETOOL |
|
|
429 | (32) |
|
Basic PDEs Solvable by PDETOOL |
|
|
430 | (1) |
|
|
431 | (4) |
|
Examples of Using PDETOOL to Solve PDEs |
|
|
435 | (9) |
|
|
444 | (17) |
Appendix A. Mean Value Theorem |
|
461 | (2) |
Appendix B. Matrix Operations/Properties |
|
463 | (8) |
Appendix C. Differentiation with Respect to a Vector |
|
471 | (2) |
Appendix D. Laplace Transform |
|
473 | (2) |
Appendix E. Fourier Transform |
|
475 | (2) |
Appendix F. Useful Formulas |
|
477 | (4) |
Appendix G. Symbolic Computation |
|
481 | (8) |
Appendix H. Sparse Matrices |
|
489 | (2) |
Appendix I. MATLAB |
|
491 | (6) |
References |
|
497 | (2) |
Subject Index |
|
499 | (4) |
Index for MATLAB Routines |
|
503 | (6) |
Index for Tables |
|
509 | |