Muutke küpsiste eelistusi

E-raamat: Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, June 5-7, 2020, Proceedings, Part I

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This 2 volume-set of IFIP AICT 583 and 584 constitutes the refereed proceedings of the 16th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2020, held in Neos Marmaras, Greece, in June 2020.*

The 70 full papers and 5 short papers presented were carefully reviewed and selected from 149 submissions. They cover a broad range of topics related to technical, legal, and ethical aspects of artificial intelligence systems and their applications and are organized in the following sections:

Part I: classification; clustering - unsupervised learning -analytics; image processing; learning algorithms; neural network modeling; object tracking - object detection systems; ontologies - AI; and sentiment analysis - recommender systems.





Part II: AI ethics - law; AI constraints; deep learning - LSTM; fuzzy algebra - fuzzy systems; machine learning; medical - health systems; and natural language.





*The conference was held virtually due to the COVID-19 pandemic.
Classification.- An Adaptive Approach on Credit Card Fraud Detection
using Transaction Aggregation and Word Embeddings.- Boosted Ensemble Learning
for Anomaly Detection in 5G RAN.- Machine Learning for Cognitive Load
Classification a Case Study on Contact-free Approach.- Real-time prediction
of online shoppers' purchasing intention using random forest.- Using
Classification for Traffic Prediction in Smart Cities.- Using Twitter to
Predict Chart Position for Songs.- Benchmarking of IBM, Google and Wit
Automatic Speech Recognition Systems.- Clustering - Unsupervised Learning -
Analytics.- A two-levels data anonymization approach.- An innovative
graph-based approach to advance feature selection from multiple textual
documents.- k-means Cluster Shape Implications.- Manifold learning for
innovation funding: identification of potential funding recipients.- Network
aggregation to enhance results derived from multiple analytics.- PolicyCLOUD:
Analytics as a Service facilitating efficient data-driven public policy
management.- Demand Forecasting of Short Life Cycle Products using Data
Mining Techniques.- Image Processing.- Arbitrary Scale Super-Resolution for
Brain MRI Images.- Knowledge-based fusion for image tampering localization.-
Transfer Learning using Convolutional Neural Network Architectures for Brain
Tumor Classification from MRI Images.- Learning Algorithms.- A Novel Learning
Automata-based Strategy to Generate Melodies from Chordal Inputs.- Graph
Neural Networks to Advance Anticancer Drug Design.- Optimizing
Self-Organizing Lists-on-Lists using Transitivity and Pursuit-Enhanced Object
Partitioning.- Task-Projected Hyperdimensional Computing for Multi-Task
Learning.- Neural Network Modeling.- Cross-domain Authorship Attribution
Using Pre-trained Language Models.- Indoor Localization with Multi-Objective
selection of Radiomap Models.- STDP Plasticity in TRN within Hierarchical
Spike Timing Model of Visual Information Processing.- Tensor-based CUDA
Optimization for ANN Inferencing using Parallel Acceleration on Embedded
GPU.- The Random Neural Network in Price Predictions.- Object Tracking -
Object Detection Systems.- Joint Multi-Object Detection and Segmentation from
an Untrimmed Video.- Robust 3D Detection in Traffic Scenario with
Tracking-based Coupling System.- Ontologies - AI.- Automated MeSH Indexing of
Biomedical Literature using Contextualized Word Representations.-
Knowledge-based Management and Reasoning on Cultural and Natural Touristic
Routes.- Ontological Foundations of Modelling Security Policies for Logical
Analytics.- RDF reasoning on large ontologies: a study on cultural heritage
and Wikidata.- Sentiment Analysis - Recommender Systems.- A deep learning
approach to aspect-based sentiment prediction.- On the reusability of
sentiment analysis datasets in real-life applications.- Opinion Mining of
Consumer Reviews Using Deep Neural Networks with Word-Sentiment
Associations.- Sentiment Analysis on Movie Scripts and Reviews: Utilizing
sentiment scores in rating prediction.- The MuseLearn platform: personalized
content for museum visitors assisted by vision-based recognition and 3D pose
estimation of exhibits.- Promoting Diversity in Content Based Recommendation
using Feature Weighting and LSH.