Muutke küpsiste eelistusi

E-raamat: Artificial Intelligent Approaches in Petroleum Geosciences

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 15-Jul-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031527159
  • Formaat - EPUB+DRM
  • Hind: 148,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 15-Jul-2024
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031527159

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents cutting-edge approaches to solving practical problems faced by professionals in the petroleum industry and geosciences. With various state-of-the-art working examples from experienced academics, the book offers an exposure to the latest developments in intelligent methods for oil and gas research, exploration, and production. This second edition is updated with new chapters on machine learning approaches, data-driven modelling techniques, and neural networks.

 

The book delves into machine learning approaches, including evolutionary algorithms, swarm intelligence, fuzzy logic, deep artificial neural networks, KNN, decision tree, random forest, XGBoost, and LightGBM. it also analyzes the strengths and weaknesses of each method and emphasizes essential parameters like robustness, accuracy, speed of convergence, computer time, overlearning, and normalization.

 

Integration, data handling, risk management, and uncertainty management are all crucial issues in petroleum geosciences. The complexities of these problems require a multidisciplinary approach that fuses petroleum engineering, geology, geophysics, and geochemistry. Essentially, this book presents an approach for integrating various disciplines such as data fusion, risk reduction, and uncertainty management.

 





Whether you are a professional or a student, you can greatly benefit from the latest advancements in intelligent methods applied to oil and gas research. This comprehensive and updated book presents cutting-edge approaches and real-world examples that can help you in solving the intricate challenges of the petroleum industry and geosciences.
Preface to the 2nd edition.- Preface to the 1st Edition.-
1.
Applications of Data-Driven Techniques in Reservoir Modeling and Management.-
Part 1: Waterflooding.- Part 2: Water Alternating Gas Injection, CO2 Storage,
and Property Estimations.-
2. Comparison of three machine learning approaches
in determining Total Organic Carbon (TOC): A case study from Marcellus shale
formation, New York state.-
3. Gated Recurrent Units for Lithofacies
Classification based on Seismic Inversion.-
4. Application of Artificial
Neural Networks in Geoscience and Petroleum Industry.-
5. On Support Vector
Regression to Predict Poissons Ratio and Youngs Modulus of Reservoir Rock.-
6. Use of Active Learning Method to Determine the Presence and Estimate the
Magnitude of Abnormally Pressured Fluid Zones: A Case Study from the Anadarko
Basin, Oklahoma.-
7. Active Learning Method for Estimating Missing Logs in
Hydrocarbon Reservoirs.-
8. Improving the Accuracy of Active Learning Method
via Noise Injection for Estimating Hydraulic Flow Units: An Example from a
Heterogeneous Carbonate Reservoir.-
9. Well Log Analysis by Global
Optimization-based Interval Inversion Method.-
10. Permeability Estimation in
Petroleum Reservoir by Meta-heuristics: An Overview.- Index.
Constantin Cranganu is a professor of geophysics and petroleum geology at Brooklyn College of the City University of New York. He obtained a Ph.D. degree (ABD) from the University of Bucharest, Romania (1993), in geophysics and another Ph.D. from the University of Oklahoma (1997) in geology. 





Before coming to Brooklyn College, he worked at Al. I. Cuza University of Iasi, Romania, and the School of Geology and Geophysics of University of Oklahoma. His main research covers various areas of petroleum geosciences: oil and gas generation, abnormal fluid pressures in sedimentary basins, gas hydrate exploitation, identification of gas-bearing layers using well logs, geostatistics, etc. Lately, Prof. Cranganu started using artificial intelligent approaches in his petroleum-related research. He published many books, peer-reviewed articles, book reviews, and essays. His paper, Using gene expression programming to estimate sonic log distributions based on the natural gamma ray and deep resistivity logs: A case study from the Anadarko Basin, Oklahoma, (co-author Elena Bautu), published in Journal of Petroleum Science and Engineering in 2012 was nominated for ENI Awards 2012.





In 2014, he was the author and the senior editor of Artificial Intelligent Approaches in Petroleum Geosciences, Springer, 1st edition.