Muutke küpsiste eelistusi

E-raamat: Avionics Navigation Systems, 2nd Edition 2nd Edition [Wiley Online]

  • Formaat: 800 pages
  • Ilmumisaeg: 14-May-1997
  • Kirjastus: Wiley-Interscience
  • ISBN-10: 470172703
  • ISBN-13: 9780470172704
  • Wiley Online
  • Hind: 238,90 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Formaat: 800 pages
  • Ilmumisaeg: 14-May-1997
  • Kirjastus: Wiley-Interscience
  • ISBN-10: 470172703
  • ISBN-13: 9780470172704
A unified treatment of the principles and practices of modern navigation sensors and systems, for engineers and systems analysts who design, build, and maintain such systems, and for pilots and operations staff who use them. Essentially rewritten from the 1969 edition to encompass such innovations as navigation satellites, the decrease in size and cost and the increase in speed and memory of computers, new algorithms that mix the outputs of several sensors to produce a best estimate of position and velocity, and the increased use of avionics on aircraft so that navigation is now often only one of several subsystems. Annotation c. by Book News, Inc., Portland, Or.

An indispensable resource for all those who design, build, manage, and operate electronic navigation systems

Avionics Navigation Systems, Second Edition, is a complete guide to the art and science of modern electronic navigation, focusing on aircraft. It covers electronic navigation systems in civil and military aircraft, helicopters, unmanned aerial vehicles, and manned spacecraft. It has been thoroughly updated and expanded to include all of the major advances that have occurred since the publication of the classic first edition. It covers the entire field from basic navigation principles, equations, and state-of-the-art hardware to emerging technologies. Each chapter is devoted to a different system or technology and provides detailed information about its functions, design characteristics, equipment configurations, performance limitations, and directions for the future. You'll find everything you need to know about:
*

Traditional ground-based radio navigation
*

Satellite systems: GPS, GLONASS, and their augmentations
*

New inertial systems, including optical rate sensors, micromechanical accelerometers, and high-accuracy stellar-inertial navigators Instrument Landing System and its successors
*

Integrated communication-navigation systems used on battlefields
*

Airborne mapping, Doppler, and multimode radars
*

Terrain matching
*

Special needs of military aircraft
*

And much more
Preface xvii(4) Acknowledgments xxi(2) List of Contributors xxiii 1 Introduction 1(20) Myron Kayton 1.1 Definitions 1(1) 1.2 Guidance versus Navigation 1(1) 1.3 Categories of Navigation 2(1) 1.4 The Vehicle 3(4) 1.4.1 Civil Aircraft 3(2) 1.4.2 Military Aircraft 5(2) 1.5 Phases of Flight 7(2) 1.5.1 Takeoff 7(1) 1.5.2 Terminal Area 7(1) 1.5.3 En route 7(1) 1.5.4 Approach 8(1) 1.5.5 Landing 8(1) 1.5.6 Missed Approach 9(1) 1.5.7 Surface 9(1) 1.5.8 Weather 9(1) 1.6 Design Trade-offs 9(2) 1.7 Evolution of Air Navigation 11(4) 1.8 Integrated Avionics 15(4) 1.8.1 All Aircraft 15(1) 1.8.2 Military Avionics 16(1) 1.8.3 Architecture 17(2) 1.9 Human Navigator 19(2) 2 The Navigation Equations 21(34) Myron Kayton 1.1 Introduction 21(2) 2.2 Geometry of the Earth 23(3) 2.3 Coordinate Frames 26(3) 2.4 Dead-Reckoning Computations 29(3) 2.5 Positioning 32(5) 2.5.1 Radio Fixes 32(1) 2.5.2 Line-of-Sight Distance Measurement 33(2) 2.5.3 Ground-Wave One-Way Ranging 35(1) 2.5.4 Ground-Wave Time-Differencing 36(1) 2.6 Terrain-Matching Navigation 37(1) 2.7 Course Computation 38(6) 2.7.1 Range and Bearing Calculation 38(3) 2.7.2 Direct Steering 41(1) 2.7.3 Airway Steering 41(1) 2.7.4 Area Navigation 42(3) 2.8 Navigation Errors 44(5) 2.8.1 Test Data 44(4) 2.8.2 Geometric Dilution of Precision 48(1) 2.9 Digital Charts 49(2) 2.10 Software Development 51(1) 2.11 Future Trends 52(1) Problems 52(3) 3 Multisensor Navigation Systems 55(44) James R. Huddle R. Grover Brown 3.1 Introduction 55(2) 3.2 Inertial System Characteristics 57(4) 3.3 An Integrated Stellar-Inertial System 61(3) 3.4 Integrated Doppler-Inertial Systems 64(3) 3.5 An Airspeed-Damped Inertial System 67(1) 3.6 An Integrated Stellar-Inertial-Doppler System 68(1) 3.7 Position Update of an Inertial System 69(1) 3.8 Noninertial GPS Multisensor Navigation Systems 69(1) 3.9 Filtering of Measurements 70(2) 3.9.1 Single Sensor, Stationary Vehicle 70(1) 3.9.2 Multiple Sensors, Stationary Vehicle 71(1) 3.9.3 Multiple Sensors, Moving Vehicle 72(1) 3.10 Kalman Filter Basics 72(5) 3.10.1 The Process and Measurement Models 73(2) 3.10.2 The Error Covariance Matrix 75(1) 3.10.3 The Recursive Filter 75(2) 3.11 Open-Loop Kalman Filter Mechanization 77(2) 3.12 Closed-Loop Kalman Filter Mechanization 79(2) 3.13 GPS-INS Mechanization 81(10) 3.13.1 Linearizing a Nonlinear Range Measurement 81(1) 3.13.2 GPS Clock Error Model 82(1) 3.13.3 11-State GPS-INS Linear Error Model 83(7) 3.13.4 Elaboration of the 11-State GPS-INS Error Model 90(1) 3.14 Practical Considerations 91(2) 3.15 Federated System Architecture 93(3) 3.16 Future Trends 96(1) Problems 96(3) 4 Terrestrial Radio-Navigation Systems 99(79) Bahar J. Uttam David H. Amos Joseph M. Covino Peter Morris 4.1 Introduction 99(1) 4.2 General Principles 99(12) 4.2.1 Radio Transmission and Reception 99(5) 4.2.2 Propagation and Noise Characteristics 104(7) 4.3 System Design Considerations 111(5) 4.3.1 Radio-Navigation System Types 111(3) 4.3.2 System Performance Parameters 114(2) 4.4 Point Source Systems 116(22) 4.4.1 Direction-Finding 116(4) 4.4.2 Nondirectional Beacons 120(1) 4.4.3 Marker Beacons 121(1) 4.4.4 VHF Omnidirectional Range (VOR) 122(4) 4.4.5 Doppler VOR 126(1) 4.4.6 Distance-Measuring Equipment (DME) 127(6) 4.4.7 Tactical Air Navigation (Tacan) 133(5) 4.4.8 VORTAC 138(1) 4.5 Hyperbolic Systems 138(37) 4.5.1 Loran 138(17) 4.5.2 Omega 155(16) 4.5.3 Decca 171(2) 4.5.4 Chayka 173(2) 4.6 Future Trends 175(1) Problems 176(2) 5 Satellite Radio Navigation 178(105) A. J. Van Dierendonck 5.1 Introduction 178(2) 5.1.1 System Configuration 179(1) 5.2 The Basics of Satellite Radio Navigation 180(4) 5.2.1 Ranging Equations 181(2) 5.2.2 Range-Rate (Change-in-Range) Equations 183(1) 5.2.3 Clock Errors 184(1) 5.3 Orbital Mechanics and Clock Characteristics 184(8) 5.3.1 Orbital Mechanics 184(6) 5.3.2 Clock Characteristics 190(2) 5.4 Atmospheric Effects on Satellite Signals 192(5) 5.4.1 Ionospheric Refraction 192(3) 5.4.2 Tropospheric Refraction 195(2) 5.5 NAVSTAR Global Positioning System 197(60) 5.5.1 Principles of GPS and System Operation 197(3) 5.5.2 GPS Satellite Constellation and Coverage 200(4) 5.5.3 Space Vehicle Configuration 204(3) 5.5.4 The GPS Control Segment 207(6) 5.5.5 GPS Signal Structure 213(5) 5.5.6 The GPS Navigation Message 218(8) 5.5.7 GPS Measurements and the Navigation Solution 226(3) 5.5.8 Aviation Receiver Characteristics 229(19) 5.5.9 Differential GPS 248(5) 5.5.10 GPS Accuracy 253(4) 5.6 Global Orbiting Navigation Satellite System (GLONASS) 257(5) 5.6.1 GLONASS Orbits 257(1) 5.6.2 GLONASS Signal Structure 258(3) 5.6.3 The GLONASS Navigation Message 261(1) 5.6.4 Time and Coordinate Systems 262(1) 5.6.5 GLONASS Constellation 262(1) 5.7 GNSS Integrity and Availability 262(16) 5.7.1 Receiver Autonomous Integrity Monitoring (RAIM) 263(4) 5.7.2 Combined GPS/GLONASS 267(1) 5.7.3 Wide Area Augmentation System (WAAS) 268(7) 5.7.4 Pseudolite Augmentation 275(3) 5.8 Future Trends 278(1) Problems 279(4) 6 Terrestrial Integrated Radio Communication-Navigation Systems 283(30) Walter R. Fried James A. Kivett Edgar Westbrook 6.1 Introduction 283(1) 6.2 JTIDS Relative Navigation 284(15) 6.2.1 General Principles 284(1) 6.2.2 JTIDS System Characteristics 285(1) 6.2.3 Clock Synchronization 286(2) 6.2.4 Coordinate Frames and Community Organization 288(1) 6.2.5 Operational Utility 290(1) 6.2.6 Mechanization 290(7) 6.2.7 Error Characteristics 297(2) 6.2.8 System Accuracy 299(1) 6.3 Position Location Reporting System 299(12) 6.3.1 General Principles 299(1) 6.3.2 System Elements 300(1) 6.3.3 Control Network Structure 301(1) 6.3.4 Waveform Architecture 302(2) 6.3.5 Measurements 304(2) 6.3.6 Position Location and Tracking 306(1) 6.3.7 Tracking Filter 307(1) 6.3.8 Network and Traffic Management 308(1) 6.3.9 System Capacity and Accuracy 309(1) 6.3.10 PLRS User Equipment Characteristics 310(1) 6.3.11 System Enhancements 310(1) 6.4 Future Trends 311(1) Problems 312(1) 7 Inertial Navigation 313(80) Daniel A. Tazartes Myron Kayton John G. Mark 7.1 Introduction 313(1) 7.2 The System 314(3) 7.3 Instruments 317(31) 7.3.1 Accelerometers 317(7) 7.3.2 Gyroscopes 324(2) 7.3.3 Optical Gyroscopes 326(16) 7.3.4 Mechanical Gyroscopes 342(5) 7.3.5 Future Inertial Instruments 347(1) 7.4 Platforms 348(17) 7.4.1 Analytic Platform (Strapdown) 348(13) 7.4.2 Gimballed Platform 361(3) 7.4.3 Inertial Specifications 364(1) 7.5 Mechanization Equations 365(11) 7.5.1 Coordinate Frames 365(3) 7.5.2 Horizontal Mechanization 368(5) 7.5.3 Vertical Mechanization 373(3) 7.6 Error Analysis 376(3) 7.6.1 Purpose 376(1) 7.6.2 Simulation 376(1) 7.6.3 Error Propagation 377(2) 7.6.4 Total System Error 379(1) 7.7 Alignment 379(10) 7.7.1 Leveling 382(2) 7.7.2 Gyrocompass Alignment 384(2) 7.7.3 Transfer Alignment 386(3) 7.7.4 Attitude and Heading Reference Systems (AHRS) 389(1) 7.8 Fundamental Limits 389(1) 7.9 Future Trends 389(1) Problems 390(3) 8 Air-Data Systems 393(33) Stephen S. Osder 8.1 Introduction 393(1) 8.2 Air-Data Measurements 394(8) 8.2.1 Conventional Intrusive Probes 394(1) 8.2.2 Static Pressure 394(2) 8.2.3 Total Pressure 396(2) 8.2.4 Air Temperature 398(1) 8.2.5 Angle of Attack and Angle of Sideslip 399(1) 8.2.6 Air-Data Transducers 400(2) 8.3 Air-Data Equations 402(5) 8.3.1 Altitude 402(3) 8.3.2 Mach Number 405(1) 8.3.3 Calibrated Airspeed 406(1) 8.3.4 True Airspeed 407(1) 8.3.5 Altitude Rate 407(1) 8.4 Air-Data Systems 407(6) 8.4.1 Accuracy Requirements 407(2) 8.4.2 Air-Data Computers 409(3) 8.4.3 Architecture Trends 412(1) 8.5 Specialty Designs 413(9) 8.5.1 Helicopter Air-Data Systems 413(5) 8.5.2 Optical Air-Data Systems 418(3) 8.5.3 Hypersonic Air Data 421(1) 8.6 Calibration and System Test 422(2) 8.6.1 Ground Calibration 422(1) 8.6.2 Flight Calibration 423(1) 8.6.3 Built-in Test (BIT) 423(1) 8.7 Future Trends 424(1) Problems 424(2) 9 Attitude and Heading References 426(23) Myron Kayton Willis G. Wing 9.1 Introduction 426(1) 9.2 Basic Instruments 427(2) 9.2.1 Gyroscopes 427(1) 9.2.2 Gravity Sensors 428 9.3 Vertical References 429(7) 9.3.1 The Averaging Vertical Reference 431(2) 9.3.2 Rate Compensations 433(1) 9.3.3 Acceleration Corrections 434(2) 9.3.4 Maneuver Errors 436(1) 9.4 Heading References 436(10) 9.4.1 Earths Magnetic Field 437(1) 9.4.2 Aircraft Magnetic Effects 438(1) 9.4.3 The Magnetic Compass Needle 439(1) 9.4.4 Magnetometers 440(3) 9.4.5 Electrical Swinging 443(1) 9.4.6 The Directional Gyroscope 444(2) 9.5 Initial Alignment of Heading References 446(1) 9.6 Future Trends 446(1) Problems 447(2) 10 Doppler and Altimeter Radars 449(54) Walter R. Fried Heinz Buell James R. Hager 10.1 Doppler Radars 449(8) 10.1.1 Functions and Applications 449(2) 10.1.2 Doppler Radar Principles and Design Approaches 451(21) 10.1.3 Signal Characteristics 472(5) 10.1.4 Doppler Radar Errors 477(3) 10.1.5 Equipment Configurations 490(1) 10.2 Radar Altimeters 491(7) 10.2.1 Functions and Applications 491(1) 10.2.2 General Principles 492(1) 10.2.3 Pulsed Radar Altimeters 492(1) 10.2.4 FM-CW Radar Altimeter 493(4) 10.2.5 Phase-Coded Pulsed Radar Altimeters 497(1) 10.3 Future Trends 498(2) Problems 500 11 Mapping and Multimode Radars 503(48) Jack O. Pearson Thomson S. Abbott, Jr. Robert H. Jeffers 11.1 Introduction 503(1) 11.2 Radar Pilotage 504(5) 11.3 Semiautomatic Position Fixing 509(2) 11.4 Semiautomatic Position Fixing with Synthetic Aperture Radars 511(11) 11.4.1 Unfocused Systems 514(2) 11.4.2 Focused Systems 516(2) 11.4.3 Motion Compensation 518(4) 11.5 Precision Velocity Update 522(7) 11.5.1 Mechanization 523(2) 11.5.2 PVU Measurement Errors 525(2) 11.5.3 PVU Kalman Filter 527(2) 11.5.4 PVU Mode Observability Concerns 529(1) 11.6 Terrain Following and Avoidance 529(9) 11.6.1 Radar Mode and Scan Pattern Implementation 532(2) 11.6.2 Terrain Measurement 534(2) 11.6.3 Aircraft Control 536(2) 11.7 Multimode Radars 538(1) 11.8 Signal Processing 539(1) 11.9 Airborne Weather Radar 540(5) 11.9.1 Radar Reflectivity of Weather Formations 542(1) 11.9.2 Weather Radar Processing 543(1) 11.9.3 Radar Detection of Microburst and Wind Shear 544(1) 11.10 Future Trends 545(6) 11.10.1 Electronic Scanned Arrays 546(1) 11.10.2 Radar Processing 547(1) 11.10.3 Radar Receiver/Exciter Function 548(1) 11.10.4 Interfaces and Packaging 549(1) 11.10.5 Displays 549(1) Problems 549(2) 12 Celestial Navigation 551(46) Edward J. Knobbe Gerald N. Haas 12.1 Introduction 551(2) 12.1.1 Evolution of Celestial Navigation 551(1) 12.1.2 General System Description 552(1) 12.2 Star Observation Geometry 553(4) 12.3 Theory of Stellar-Inertial Navigation 557(7) 12.3.1 Modeling and Kalman Filtering 558(4) 12.3.2 Information and Observability 562(2) 12.4 Stellar Sensor Design Characteristics 564(11) 12.4.1 Telescope Parameters 564(3) 12.4.2 Star-Signal Power 567(1) 12.4.3 Sky Background Power 568(4) 12.4.4 Star-light Detection 572(1) 12.4.5 Focal Plane Array Processing 573(2) 12.5 Celestial Navigation System Design 575(8) 12.5.1 Time Reference 575(1) 12.5.2 Star Observation and Pointing Errors 576(2) 12.5.3 Stabilized Platform Configuration 578(3) 12.5.4 Strapdown IMU Configuration 581(2) 12.6 Star Catalog Characteristics 583(7) 12.6.1 Star Catalog Contents 584(1) 12.6.2 Star Catalog Size 584(2) 12.6.3 Planet and Moon Avoidance 586(4) 12.6.4 Star Position Corrections 586(4) 12.7 System Calibration and Alignment 590(4) 12.7.1 Factory Calibration 590(2) 12.7.2 Pre-flight and In-flight Calibration and Alignment 592(2) 12.8 Future Trends 594(1) Problems 594(3) 13 Landing Systems 597(45) D. B. Vickers Richard H. McFarland William M. Waters Myron Kayton 13.1 Introduction 597(1) 13.2 Low-Visibility Operations 597(3) 13.3 The Mechanics of the Landing 600(5) 13.3.1 The Approach 600(3) 13.3.2 The Flare Maneuver 603(1) 13.3.3 The Decrab Maneuver and Touchdown 603(1) 13.3.4 Rollout and Taxi 604(1) 13.4 Automatic Landing Systems 605(3) 13.4.1 Guidance and Control Requirements 606(1) 13.4.2 Flare Guidance 606(1) 13.4.3 Lateral Guidance 607(1) 13.5 The Instrument Landing System 608(12) 13.5.1 ILS Guidance Signals 608(13) 13.5.2 The Localizer 613(1) 13.5.3 The Glide Slope 614(2) 13.5.4 ILS Marker Beacons 618(1) 13.5.5 Receivers 618(1) 13.5.6 ILS Limitations 619(1) 13.6 The Microwave-Landing System 620(8) 13.6.1 Signal Format 621(1) 13.6.2 The Angle Functions 621(4) 13.6.3 Data Functions 625(1) 13.6.4 Aircraft Antennas and Receivers 626(1) 13.6.5 Mobile MLS 627(1) 13.6.6 Precision DME (DME/P) 627(1) 13.7 Satellite Landing Systems 628(2) 13.7.1 Augmentation Concepts 628(1) 13.7.2 Position Solutions 629(1) 13.7.3 Research Issues 630(1) 13.8 Carrier-Landing Systems 630(6) 13.8.1 Description of the Problem 630(3) 13.8.2 Optical Landing Aids 633(1) 13.8.3 Electronic Landing Aids 634(2) 13.9 Future Trends 636(6) 13.9.1 Pilot Aids 636(2) 13.9.2 Satellite Landing Aids 638(1) 13.9.3 Airport Surface Navigation 638(1) 13.9.4 Carrier Landing 638(1) Problems 638(4) 14 Air Traffic Management 642 Clyde A. Miller John A. Scardina 14.1 Introduction 642(1) 14.1.1 Services Provided to Aircraft Operators 642(1) 14.1.2 Government Responsibilities 643(1) 14.2 Flight Rules and Airspace Organization 643(3) 14.2.1 Visual and Instrument Flight Rules 643(1) 14.2.2 Altimetry 644(1) 14.2.3 Controlled Airspace 645(1) 14.2.4 Uncontrolled Airspace 645(1) 14.2.5 Special Use Airspace 646(1) 14.3 Airways and Procedures 646(9) 14.3.1 Victor Airways and Jet Routes 646(3) 14.3.2 Random Routes 649(1) 14.3.3 Separation Standards 649(2) 14.3.4 Terminal Instrument Procedures 651(4) 14.3.5 Standard Instrument Departures and Arrivals 655(1) 14.4 Phases of Flight 655(6) 14.4.1 Pre-flight Planning 656(1) 14.4.2 Departure 657(1) 14.4.3 En Route 658(1) 14.4.4 Approach and Landing 659(1) 14.4.5 Oceanic 660(1) 14.5 Subsystems 661(16) 14.5.1 Navigation 661(3) 14.5.2 Radar Surveillance 664(3) 14.5.3 Automatic Dependent Surveillance 667(2) 14.5.4 Air-to-Ground Data Link Communications 669(3) 14.5.5 Aviation Weather 672(1) 14.5.6 Automation and Display Subsystem 673(2) 14.5.7 Airborne ATM Subsystems 675(2) 14.6 Facilities and Operations 677(4) 14.6.1 National Traffic Management 677(1) 14.6.2 En-route Facilities 677(2) 14.6.3 Terminal Facilities 679(1) 14.6.4 Airport Facilities 679(1) 14.6.5 Flight Service Facilities 680(1) 14.6.6 Oceanic Facilities 680(1) 14.7 System Capacity 681(3) 14.7.1 Reducing Peak Demand 681(1) 14.7.2 Increasing System Capacity 682(2) 14.8 Airborne Collision Avoidance Systems 684(2) 14.9 Future Trends 686(3) Problems 689(2) 15 Avionics Interfaces 691(14) Cary R. Spitzer 15.1 Introduction 691(1) 15.2 Data Buses 691(3) 15.3 Crew Displays 694(6) 15.4 Power 700(1) 15.5 Maintenance 700(1) 15.6 Physical Interface 701(2) 15.7 Future Trends 703(1) Problems 704(1) References 705(36) Index 741
MYRON KAYTON, PhD, is President of Kayton Engineering Company, with forty years of experience designing avionic, navigation, communication, and process systems. He has served as TRW's Chief Engineer for Spacelab avionics, Head of System Engineering for Space Shuttle avionics, and Project Engineer for the electronics of the Inertial Upper Stage. During the Apollo project, he was Deputy Manager for Lunar Module Guidance and Control at NASA's Johnson Space Center and is a former section head at Litton's Guidance and Control Division, where he designed some of the earliest multisensor navigation systems. Dr. Kayton is a Fellow of the Institute of Electrical and Electronics Engineers and an elected member of the corporate board of directors. An instrument-rated pilot, he also holds an FAA Project Raincheck certificate in air traffic control.

WALTER R. FRIED, MS, is a navigation systems consultant who is widely known in the field of navigation. In his long career in aerospace electronics, he has worked on most types of navigation systems, as well as on air traffic management, airborne radar, antennas, and communication systems. He was instrumental in developing a new FM-CW Doppler navigation radar for helicopters that is still in widespread use. Mr. Fried was Chief Scientist for Subsystems of the F-111 Avionics System and Technical Director of the JTIDS Relative Navigation System. He served on the FAA-commissioned Blue-Ribbon RTCA Task Force on the "Global Navigation Satellite System Transition and Implementation Strategy" and on several other GPS-related RTCA Committees. A Fellow of the IEEE, he is a coauthor of the book Airborne Radar.