Muutke küpsiste eelistusi

E-raamat: Circuits, Signals, and Systems

  • Formaat: 651 pages
  • Sari: The MIT Press
  • Ilmumisaeg: 24-Sep-1985
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262290968
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 104,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 651 pages
  • Sari: The MIT Press
  • Ilmumisaeg: 24-Sep-1985
  • Kirjastus: MIT Press
  • Keel: eng
  • ISBN-13: 9780262290968
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

These twenty lectures have been developed and refined by Professor Siebert during the more than two decades he has been teaching introductory Signals and Systems courses at MIT.

These twenty lectures have been developed and refined by Professor Siebert during the more than two decades he has been teaching introductory Signals and Systems courses at MIT. The lectures are designed to pursue a variety of goals in parallel: to familiarize students with the properties of a fundamental set of analytical tools; to show how these tools can be applied to help understand many important concepts and devices in modern communication and control engineering practice; to explore some of the mathematical issues behind the powers and limitations of these tools; and to begin the development of the vocabulary and grammar, common images and metaphors, of a general language of signal and system theory.

Although broadly organized as a series of lectures, many more topics and examples (as well as a large set of unusual problems and laboratory exercises) are included in the book than would be presented orally. Extensive use is made throughout of knowledge acquired in early courses in elementary electrical and electronic circuits and differential equations.

Contents: Review of the "classical" formulation and solution of dynamic equations for simple electrical circuits; The unilateral Laplace transform and its applications; System functions; Poles and zeros; Interconnected systems and feedback; The dynamics of feedback systems; Discrete-time signals and linear difference equations; The unilateral Z-transform and its applications; The unit-sample response and discrete-time convolution; Convolutional representations of continuous-time systems; Impulses and the superposition integral; Frequency-domain methods for general LTI systems; Fourier series; Fourier transforms and Fourier's theorem; Sampling in time and frequency; Filters, real and ideal; Duration, rise-time and bandwidth relationships: The uncertainty principle; Bandpass operations and analog communication systems; Fourier transforms in discrete-time systems; Random Signals; Modern communication systems.

Circuits, Signals, and Systems is included in The MIT Press Series in Electrical Engineering and Computer Science, copublished with McGraw-Hill.
Preface xiii
Dynamic Equations and Their Solutions for Simple Circuits
Introduction
1(1)
Constitutive Relations for Elements
1(5)
Interconnection Constraints: Kirchhoff's Laws
6(1)
Dynamic Equations in Node and State Form
7(6)
Block Diagrams
13(3)
Solutions of the Dynamic Equations
16(1)
Solutions of the Dynamic Equations When the Inputs Are Zero
16(3)
Solutions of the Dynamic Equations for Exponential Inputs
19(6)
Summary
25(18)
Exercises
26(5)
Problems
31(12)
The Unilateral Laplace Transform
Introduction
43(1)
The Unilateral Laplace Transform
44(1)
Examples of L-Transforms and Theorems
45(4)
The Inverse Laplace Transform
49(3)
Multiple-Order Poles
52(2)
Circuit Analysis with the Laplace Transform
54(7)
Summary
61(11)
Appendix: Short Table of Unilateral Laplace Transforms
62(1)
Exercises
63(2)
Problems
65(7)
System Functions
Introduction
72(1)
A Superposition Formula for LTI Circuits
72(2)
System Functions
74(3)
System Functions as the Response Amplitudes to Exponential Drives
77(2)
System Functions and the Input-Output Differential Equation
79(3)
Summary
82(23)
Appendix: System Function Characterization of LTI 2-ports
84(3)
Exercises
87(2)
Problems
89(16)
Poles and Zeros
Introduction
105(1)
Pole-Zero Diagrams
105(4)
Vectorial Interpretation of H(jw)
109(5)
Potential Analogies
114(2)
Bode Diagrams
116(4)
Summary
120(19)
Exercises
121(5)
Problems
126(13)
Interconnected Systems and Feedback
Introduction
139(2)
Elementary System Interconnections; Effects of Loading
141(3)
Simple Feedback Loops
144(2)
Examples of the Effects of Negative Feedback
146(12)
Summary
158(5)
Exercises
159(1)
Problems
160(3)
The Dynamics of Feedback Systems
Introduction
163(1)
Inverse Systems
163(3)
Feedback Effects on Bandwidth and Response Time
166(6)
Stability
172(5)
Feedback Stabilization of Unstable Systems
177(6)
Summary
183(24)
Appendix: The Nyquist Stability Criterion
184(8)
Exercises
192(3)
Problems
195(12)
Discrete-time Signals and Linear Difference Equations
Introduction
207(2)
Linear Difference Equations
209(3)
Block Diagrams and State Formulations for DT Systems
212(7)
Direct Solution of Linear Difference Equations
219(3)
Zero Input Response
222(2)
Summary
224(7)
Exercises
225(1)
Problems
226(5)
The Unilateral Z-Transform and Its Applications
Introduction
231(1)
The Z-Transform
231(8)
The Z-Transform Applied to LTI Discrete-Time Systems
239(2)
Frequency-Domain Representations of Discrete-Time Systems
241(8)
Summary
249(11)
Appendix: Short Table of Unilateral Z-Transforms
250(1)
Exercises
251(1)
Problems
252(8)
The Unit Sample Response and Discrete-Time Convolution
Introduction
260(1)
The Convolution Theorem for Z-Transforms
261(6)
Convolution and General Linear Time-Invariant Systems
267(5)
Algebraic Properties of the General Convolution Operation
272(2)
An Example of Deconvolution
274(4)
Summary
278(8)
Exercises
280(1)
Problems
281(5)
Convolutional Representations of Continous-Time Systems
Introduction
286(1)
The L-Transform Convolution Theorem
287(4)
Convolution and General LTI Systems
291(7)
Causality and Stability
298(5)
Summary
303(11)
Exercises
304(1)
Problems
305(9)
Impulses and the Superposition Integral
Introduction
314(1)
The Smoothing Effect of Physical Systems
314(4)
Impulses and Their Fundamental Properties
318(5)
General LTI Systems; The Superposition Integral
323(12)
Impulses and Sudden Changes in Initial State
335(3)
Doublets and Other Generalized Functions; Impulse Matching
338(6)
Summary
344(20)
Exercises
345(4)
Problems
349(15)
Frequency-Domain Methods for General LTI Systems
Introduction
364(2)
Strips of Convergence for H(s)
366(1)
The Fourier Integral
367(2)
A Special Case-Fourier Series
369(3)
Other Forms of Fourier Series; Spectra
372(8)
Averages of Periodic Functions; Parseval's Theorem
380(3)
Summary
383(10)
Exercises
385(1)
Problems
386(7)
Fourier Transforms and Fourier's Theorem
Introduction
393(1)
Extension of the Fourier Series to the Fourier Integral
394(8)
More Careful Statements of Fourier's Theorem
402(2)
Further Examples of Fourier's Theorem; Singularity Functions
404(5)
The Convolution Property of Fourier Transforms
409(4)
Summary
413(16)
Appendix A: Tables of Fourier Transforms and Their Properties
414(3)
Appendix B: The Bilateral Laplace Transform
417(2)
Exercises
419(1)
Problems
420(9)
Sampling in Time and Frequency
Introduction
429(1)
The Periodic Impulse Train
429(2)
Fourier Transforms of Periodic Functions; Fourier Series Revisited
431(392)
The Sampling Theorem
435(4)
Pulse Modulation Systems
439(3)
The Discrete-Time Fourier Transform
442(3)
Summary
445(26)
Appendix: Vector-Space Representations of Signals
446(9)
Exercises
455(2)
Problems
457(14)
Filters, Real and Ideal
Introduction
471(1)
Ideal Filters
472(3)
Causality Conditions and Hilbert Transforms
475(5)
The Ideal Filter Step Response and Gibbs' Phenomenon
480(3)
Summary
483(5)
Exercises
484(1)
Problems
485(3)
Duration-Bandwith Relationships and the Uncertainty Principle
Introduction
488(1)
Definitions of Delay, Rise Time, Duration, and Bandwidth
488(9)
The Significance of the Uncertainty Principle; Pulse Resolution
497(5)
Summary
502(5)
Exercises
503(1)
Problems
504(3)
Bandpass Operations and Analog Communication Systems
Introduction
507(1)
Amplitude Modulation
508(12)
Mixers and Superheterodyne Receivers
520(3)
Single-Side-Band Modulation; General Narrowband Representations
523(7)
Phase and Frequency Modulation
530(8)
Summary
538(20)
Exercises
539(2)
Problems
541(17)
Fourier Transforms in Discrete-Time Systems
Introduction
558(2)
Properties of the Discrete-Time Fourier Transform
560(6)
Discrete-Time Filters
566(7)
The DT Fourier Series and the Discrete Fourier Transform
573(4)
Properties of the DT Fourier Series and the DFT
577(2)
Summary
579(16)
Appendix-Short Table of Discrete-Time Fourier Transforms
581(1)
Exercises
582(2)
Problems
584(11)
Averages and Random Signals
Introduction
595(2)
Averages of Periodic Functions
597(7)
Properties of Infinite-Time Averages
604(4)
Probabilistic Models of Simple Random Processes
608(10)
Summary
618(9)
Problems
620(7)
Modern Communication Systems
Introduction
627(1)
Sampling and Quantizing
628(4)
Error-Correcting Codes
632(2)
Modulation and Detection
634(7)
Pulse-Amplitude Modulation (PAM)
634(3)
Pulse-Code Modulation (PCM)
637(2)
Pulse-Position Modulation (PPM)
639(2)
Summary
641(1)
Epilogue 642(1)
Index 643