Muutke küpsiste eelistusi

E-raamat: Communication Networks: A Concise Introduction, Second Edition

  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book results from many years of teaching an upper division course on communication networks in the EECS department at the University of California, Berkeley. It is motivated by the perceived need for an easily accessible textbook that puts emphasis on the core concepts behind current and next generation networks. After an overview of how today's Internet works and a discussion of the main principles behind its architecture, we discuss the key ideas behind Ethernet, WiFi networks, routing, internetworking, and TCP. To make the book as self-contained as possible, brief discussions of probability and Markov chain concepts are included in the appendices. This is followed by a brief discussion of mathematical models that provide insight into the operations of network protocols. Next, the main ideas behind the new generation of wireless networks based on LTE, and the notion of QoS are presented. A concise discussion of the physical layer technologies underlying various networks is alsoincluded. Finally, a sampling of topics is presented that may have significant influence on the future evolution of networks, including overlay networks like content delivery and peer-to-peer networks, sensor networks, distributed algorithms, Byzantine agreement, source compression, SDN and NFV, and Internet of Things.
Praise for Communication Networks: A Concise Introduction ii
Preface xix
1 The Internet
1(8)
1.1 Basic Operations
1(5)
1.1.1 Hosts, Routers, Links
1(1)
1.1.2 Packet Switching
1(1)
1.1.3 Addressing
2(1)
1.1.4 Routing
3(1)
1.1.5 Error Detection
4(1)
1.1.6 Retransmission of Erroneous Packets
5(1)
1.1.7 Congestion Control
5(1)
1.1.8 Flow Control
5(1)
1.2 DNS, HTTP, and WWW
6(1)
1.2.1 DNS
6(1)
1.2.2 HTTP and WWW
6(1)
1.3 Summary
6(1)
1.4 Problems
7(1)
1.5 References
7(2)
2 Principles
9(20)
2.1 Sharing
9(1)
2.2 Metrics
10(8)
2.2.1 Link Rate
10(1)
2.2.2 Link Bandwidth and Capacity
11(1)
2.2.3 Delay
12(1)
2.2.4 Throughput
12(2)
2.2.5 Delay Jitter
14(1)
2.2.6 M/M/1 Queue
14(2)
2.2.7 Little's Result
16(1)
2.2.8 Fairness
17(1)
2.3 Scalability
18(3)
2.3.1 Location-based Addressing
18(1)
2.3.2 Two-level Routing
19(1)
2.3.3 Best Effort Service
20(1)
2.3.4 End-to-end Principle and Stateless Routers
20(1)
2.3.5 Hierarchical Naming
20(1)
2.4 Application and Technology Independence
21(1)
2.4.1 Layers
21(1)
2.5 Application Topology
22(2)
2.5.1 Client/Server
22(1)
2.5.2 P2P
23(1)
2.5.3 Cloud Computing
23(1)
2.5.4 Content Distribution
24(1)
2.5.5 Multicast/Anycast
24(1)
2.5.6 Push/Pull
24(1)
2.5.7 Discovery
24(1)
2.6 Summary
24(1)
2.7 Problems
25(3)
2.8 References
28(1)
3 Ethernet
29(18)
3.1 Typical Installation
29(1)
3.2 History of Ethernet
29(4)
3.2.1 Aloha Network
29(2)
3.2.2 Cable Ethernet
31(1)
3.2.3 Hub Ethernet
32(1)
3.2.4 Switched Ethernet
33(1)
3.3 Addresses
33(1)
3.4 Frame
33(1)
3.5 Physical Layer
34(1)
3.6 Switched Ethernet
35(2)
3.6.1 Example
35(1)
3.6.2 Learning
35(1)
3.6.3 Spanning Tree Protocol
36(1)
3.7 Aloha
37(1)
3.7.1 Time-slotted Version
37(1)
3.8 Non-slotted Aloha
38(1)
3.9 Hub Ethernet
38(1)
3.9.1 Maximum Collision Detection Time
38(1)
3.10 Appendix: Probability
39(4)
3.10.1 Probability
40(1)
3.10.2 Additivity for Exclusive Events
40(1)
3.10.3 Independent Events
41(1)
3.10.4 Slotted Aloha
41(1)
3.10.5 Non-slotted Aloha
42(1)
3.10.6 Waiting for Success
43(1)
3.10.7 Hub Ethernet
43(1)
3.11 Summary
43(1)
3.12 Problems
44(2)
3.13 References
46(1)
4 WiFi
47(20)
4.1 Basic Operations
47(1)
4.2 Medium Access Control (MAC)
48(4)
4.2.1 MAC Protocol
48(2)
4.2.2 Enhancements for Medium Access
50(1)
4.2.3 MAC Addresses
51(1)
4.3 Physical Layer
52(1)
4.4 Efficiency Analysis of MAC Protocol
53(4)
4.4.1 Single Device
53(1)
4.4.2 Multiple Devices
53(4)
4.5 Recent Advances
57(3)
4.5.1 IEEE802.11n--Introduction of MIMO in WiFi
57(1)
4.5.2 IEEE 802.11ad--WiFi in Millimeter Wave Spectrum
58(1)
4.5.3 IEEE802.11ac--Introduction of MU-MIMO in WiFi
59(1)
4.5.4 IEEE 802.11ah--WiFi for IoT and M2M
59(1)
4.5.5 Peer-to-peer WiFi
60(1)
4.6 Appendix: Markov Chains
60(3)
4.7 Summary
63(1)
4.8 Problems
63(2)
4.9 References
65(2)
5 Routing
67(20)
5.1 Domains and Two-level Routing
67(1)
5.1.1 Scalability
67(1)
5.1.2 Transit and Peering
68(1)
5.2 Inter-domain Routing
68(4)
5.2.1 Path Vector Algorithm
69(1)
5.2.2 Possible Oscillations
70(1)
5.2.3 Multi-exit Discriminators
71(1)
5.3 Intra-domain Shortest Path Routing
72(3)
5.3.1 Dijkstra's Algorithm and Link State
72(1)
5.3.2 Bellman-ford and Distance Vector
73(2)
5.4 Anycast, Multicast
75(5)
5.4.1 Anycast
75(1)
5.4.2 Multicast
76(1)
5.4.3 Forward Error Correction
77(2)
5.4.4 Network Coding
79(1)
5.5 Ad Hoc Networks
80(1)
5.5.1 AODV
80(1)
5.5.2 OLSR
81(1)
5.5.3 Ant Routing
81(1)
5.5.4 Geographic Routing
81(1)
5.5.5 Backpressure Routing
81(1)
5.6 Summary
81(1)
5.7 Problems
82(3)
5.8 References
85(2)
6 Internetworking
87(10)
6.1 Objective
87(1)
6.2 Basic Components: Subnet, Gateway, ARP
88(2)
6.2.1 Addresses and Subnets
89(1)
6.2.2 Gateway
89(1)
6.2.3 DNS Server
90(1)
6.2.4 ARP
90(1)
6.2.5 Configuration
90(1)
6.3 Examples
90(2)
6.3.1 Same Subnet
90(1)
6.3.2 Different Subnets
91(1)
6.3.3 Finding IP Addresses
91(1)
6.3.4 Fragmentation
92(1)
6.4 DHCP
92(1)
6.5 NAT
93(1)
6.6 Summary
94(1)
6.7 Problems
94(1)
6.8 References
95(2)
7 Transport
97(18)
7.1 Transport Services
97(1)
7.2 Transport Header
98(1)
7.3 TCP States
99(1)
7.4 Error Control
100(3)
7.4.1 Stop-and-wait
100(1)
7.4.2 Go Back N
100(1)
7.4.3 Selective Acknowledgments
101(1)
7.4.4 Timers
102(1)
7.5 Congestion Control
103(4)
7.5.1 AIMD
103(1)
7.5.2 Refinements: Fast Retransmit and Fast Recovery
104(2)
7.5.3 Adjusting the Rate
106(1)
7.5.4 TCP Window Size
106(1)
7.5.5 Terminology
107(1)
7.6 Flow Control
107(1)
7.7 Alternative Congestion Control Schemes
108(1)
7.8 Summary
109(1)
7.9 Problems
109(5)
7.10 References
114(1)
8 Models
115(26)
8.1 Graphs
115(3)
8.1.1 Max-flow, Min-cut
115(1)
8.1.2 Coloring and MAC Protocols
116(2)
8.2 Queues
118(4)
8.2.1 M/M/1 Queue
119(1)
8.2.2 Jackson Networks
120(1)
8.2.3 Queuing vs. Communication Networks
120(2)
8.3 The Role of Layers
122(1)
8.4 Congestion Control
123(6)
8.4.1 Fairness vs. Throughput
123(3)
8.4.2 Distributed Congestion Control
126(2)
8.4.3 TCP Revisited
128(1)
8.5 Dynamic Routing and Congestion Control
129(3)
8.6 Wireless
132(3)
8.7 Appendix: Justification for Primal-dual Theorem
135(1)
8.8 Summary
136(1)
8.9 Problems
137(3)
8.10 References
140(1)
9 LTE
141(16)
9.1 Cellular Network
141(2)
9.2 Technology Evolution
143(1)
9.3 Key Aspects of LTE
144(7)
9.3.1 LTE System Architecture
146(1)
9.3.2 Physical Layer
147(3)
9.3.3 QoS Support
150(1)
9.3.4 Scheduler
150(1)
9.4 LTE-advanced
151(2)
9.4.1 Carrier Aggregation
152(1)
9.4.2 Enhanced MIMO Support
152(1)
9.4.3 Relay Nodes (RNs)
152(1)
9.4.4 Coordinated Multi Point Operation (CoMP)
153(1)
9.5 5G
153(1)
9.6 Summary
154(1)
9.7 Problems
155(1)
9.8 References
156(1)
10 OPS
157(10)
10.1 Overview
157(1)
10.2 Traffic Shaping
158(1)
10.2.1 Leaky Buckets
158(1)
10.2.2 Delay Bounds
158(1)
10.3 Scheduling
159(3)
10.3.1 GPS
160(1)
10.3.2 WFQ
161(1)
10.4 Regulated Flows and WFQ
162(1)
10.5 End-to-end QoS
163(1)
10.6 End-to-End Admission Control
163(1)
10.7 Net Neutrality
163(1)
10.8 Summary
164(1)
10.9 Problems
164(2)
10.10 References
166(1)
11 Physical Layer
167(12)
11.1 How to Transport Bits?
167(1)
11.2 Link Characteristics
168(1)
11.3 Wired and Wireless Links
168(4)
11.3.1 Modulation Schemes: BPSK, QPSK, QAM
169(2)
11.3.2 Inter-cell Interference and OFDM
171(1)
11.4 Optical Links
172(4)
11.4.1 Operation of Fiber
173(1)
11.4.2 OOK Modulation
173(1)
11.4.3 Wavelength Division Multiplexing
174(1)
11.4.4 Optical Switching
175(1)
11.4.5 Passive Optical Network
176(1)
11.5 Summary
176(1)
11.6 References
177(2)
12 Additional Topics
179(28)
12.1 Switches
179(4)
12.1.1 Modular Switches
179(3)
12.1.2 Switched Crossbars
182(1)
12.2 Overlay Networks
183(2)
12.2.1 Applications: CDN and P2P
184(1)
12.2.2 Routing in Overlay Networks
185(1)
12.3 How Popular P2P Protocols Work
185(2)
12.3.1 1st Generation: Server-client Based
186(1)
12.3.2 2nd Generation: Centralized Directory Based
186(1)
12.3.3 3rd Generation: Purely Distributed
186(1)
12.3.4 Advent of Hierarchical Overlay--Super Nodes
187(1)
12.3.5 Advanced Distributed File Sharing: BitTorrent
187(1)
12.4 Sensor Networks
187(3)
12.4.1 Design Issues
188(2)
12.5 Distributed Applications
190(2)
12.5.1 Bellman-Ford Routing Algorithm
190(1)
12.5.2 Power Adjustment
190(2)
12.6 Byzantine Agreement
192(3)
12.6.1 Agreeing over an Unreliable Channel
193(1)
12.6.2 Consensus in the Presence of Adversaries
193(2)
12.7 Source Compression
195(1)
12.8 SDN and NFV
195(7)
12.8.1 SDN Architecture
196(1)
12.8.2 New Services Enabled by SDN
197(2)
12.8.3 Knowledge-defined Networking
199(1)
12.8.4 Management Framework for NFV
200(2)
12.9 Internet of Things (IoT)
202(1)
12.9.1 Remote Computing and Storage Paradigms
202(1)
12.10 Summary
203(1)
12.11 Problems
203(2)
12.12 References
205(2)
Bibliography 207(8)
Authors' Biographies 215(2)
Index 217
Jean Walrand received his Ph.D. in EECS from UC Berkeley, and has been on the faculty of that department since 1982. He is the author of An Introduction to Queueing Networks (Prentice Hall, 1988), Communication Networks: A First Course (2nd ed., McGraw-Hill, 1998), and Probability in Electrical Engineering and Computer Science (Amazon, 2014), and co-author of High-Performance Communication Networks (2nd ed., Morgan Kaufman, 2000), Scheduling and Congestion Control for Communication and Processing Networks (Morgan & Claypool, 2010), and Sharing Network Resources (Morgan & Claypool, 2014). His research interests include stochastic processes, queuing theory, communication networks, game theory, and the economics of the Internet. Prof. Walrand is a Fellow of the Belgian American Education Foundation and of the IEEE, and a recipient of the Informs Lanchester Prize, the IEEE Stephen O. Rice Prize, the IEEE Kobayashi Award, and the ACM Sigmetrics Achievement Award. Shyam Parekh received his Ph.D. in EECS from UC Berkeley in 1986. He is currently an Associate Adjunct Professor in the EECS department at UC Berkeley. He has previously worked at AT&T Labs, Bell Labs, TeraBlaze, and ConSentry Networks. He was a co-chair of the Application Working Group of the WiMAX Forum during 2008. He is a co-editor of Quality of Service Architectures for Wireless Networks (Information Science Reference, 2010). He currently holds 10 U.S. patents. His research interests include architecture, modeling, and analysis of both wired and wireless networks.