Muutke küpsiste eelistusi

E-raamat: Composition and Big Data

Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 84,24 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In a data-driven world, anything can be data. As the techniques and scale of data analysis advance, the need for a response from rhetoric and composition grows ever more pronounced. It is increasingly possible to examine thousands of documents and peer-review comments, labor-hours, and citation networks in composition courses and beyond. Composition and Big Data brings together a range of scholars, teachers, and administrators already working with big-data methods and datasets to kickstart a collective reckoning with the role that algorithmic and computational approaches can, or should, play in research and teaching in the field. Their work takes place in various contexts, including programmatic assessment, first-year pedagogy, stylistics, and learning transfer across the curriculum. From ethical reflections to database design, from corpus linguistics to quantitative autoethnography, these chapters implement and interpret the drive toward data in diverse ways. 

Acknowledgments ix
Introduction: Reasons to Engage Composition through Big Data 3(19)
Benjamin Miller
Amanda Licastro
SECTION ONE DATA IN STUDENTS' HANDS
1 Learning to Read Again: Introducing Undergraduates to Critical Distant Reading, Machine Analysis, and Data in Humanities Writing
22(13)
Trevor Ho Ag
Nicole Emmelhainz
2 A Corpus of First-Year Composition: Exploring Stylistic Complexity in Student Writing
35(17)
Chris Holcomb
Duncan A. Buell
3 Expanding Our Repertoire: Corpus Analysis and the Moves of Synthesis
52(14)
Alexis Teagarden
SECTION TWO DATA ACROSS CONTEXTS
4 Localizing Big Data: Using Computational Methodologies to Support Programmatic Assessment
66(19)
David Reamer
Kyle Mcintosh
5 Big Data as Mirror: Writing Analytics and Assessing Assignment Genres
85(16)
Laura Aull
6 Peer Review in First-Year Composition and STEM Courses: A Large-Scale Corpus Analysis of Key Writing Terms
101(24)
Chris M. Anson
Ian G. Anson
Kendra Andrews
7 Moving from Categories to Continuums: How Corpus Analysis Tools Reveal Disciplinary Tension in Context
125(13)
Kathryn Lambrecht
SECTION THREE DATA AND THE DISCIPLINE
8 From 1993 to 2017: Exploring "A Giant Cache of (Disciplinary) Lore" on WPA-L
138(21)
Chen Chen
9 Composing the Archives with Big Data: A Case Study in Building a Collaboratively Authored Metadata Information Infrastructure
159(20)
Jenna Morton-Aiken
10 Big-Time Disciplinarity: Measuring Professional Consequences in Candles and Clocks
179(28)
Kate Pantelides
Derek Mueller
11 The Boutique Is Open: Data for Writing Studies
207(5)
Cheryl E. Ball
Tarez Samra Graban
Michelle Sidler
SECTION FOUR DEALING WITH DATA'S COMPLICATIONS
12 Ethics, the IRBs, and Big Data Research: Toward Disciplinary Datasets in Composition
212(18)
Johanna Phelps
13 Ethics in Big Data Composition Research: Cybersecurity and Algorithmic Accountability as Best Practices
230(15)
Andrew Kulak
14 Data Do Not Speak for Themselves: Interpretation and Model Selection in Unsupervised Automated Text Analysis
245(17)
Juho Paakkonen
15 "Unsupervised Learning": Reflections on a First Foray into Data-Driven Argument
262(17)
Romeo Garcia
16 Making Do: Working with Missing and Broken Data
279(12)
Jill Dahlman
Contributors 291(5)
Index 296
Amanda Licastro is the emerging & digital literacy instructional designer at the University of Pennsylvania. Her research explores the intersection of technology and writing, including book history, dystopian literature, and digital humanities, with a focus on multimodal composition and extended reality. Benjamin Miller is assistant professor of composition in the English Department at the University of Pittsburgh, focusing on digital research and pedagogy. He is the author of the poetry collection Without Compass.