Muutke küpsiste eelistusi

E-raamat: Computer Algebra and Symbolic Computation: Mathematical Methods [Taylor & Francis e-raamat]

  • Formaat: 466 pages
  • Ilmumisaeg: 30-Sep-2020
  • Kirjastus: CRC Press
  • ISBN-13: 9780429064760
  • Taylor & Francis e-raamat
  • Hind: 156,95 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 224,21 €
  • Säästad 30%
  • Formaat: 466 pages
  • Ilmumisaeg: 30-Sep-2020
  • Kirjastus: CRC Press
  • ISBN-13: 9780429064760
Mathematica, Maple, and similar software packages provide programs that carry out sophisticated mathematical operations. Applying the ideas introduced in Computer Algebra and Symbolic Computation: Elementary Algorithms, this book explores the application of algorithms to such methods as automatic simplification, polynomial decomposition, and polynomial factorization. This book includes complexity analysis of algorithms and other recent developments. It is well-suited for self-study and can be used as the basis for a graduate course. Maintaining the style set by Elementary Algorithms, the author explains mathematical methods as needed while introducing advanced methods to treat complex operations.
Preface ix
1 Background Concepts
1(16)
1.1 Computer Algebra Systems
1(1)
1.2 Mathematical Pseudo-Language (MPL)
2(3)
1.3 Automatic Simplification and Expression Structure
5(6)
1.4 General Polynomial Expressions
11(1)
1.5 Miscellaneous Operators
12(5)
2 Integers, Rational Numbers, And Fields
17(46)
2.1 The Integers
17(20)
2.2 Rational Number Arithmetic
37(7)
2.3 Fields
44(19)
3 Automatic Simplification
63(48)
3.1 The Goal of Automatic Simplification
63(28)
3.2 An Automatic Simplification Algorithm
91(20)
4 Single Variable Polynomials
111(68)
4.1 Elementary Concepts and Polynomial Division
111(15)
4.2 Greatest Common Divisors in F[ x]
126(20)
4.3 Computations in Elementary Algebraic Number Fields
146(20)
4.4 Partial Fraction Expansion in F(x)
166(13)
5 Polynomial Decomposition
179(22)
5.1 Theoretical Background
180(8)
5.2 A Decomposition Algorithm
188(13)
6 Multivariate Polynomials
201(64)
6.1 Multivariate Polynomials and Integral Domains
201(6)
6.2 Polynomial Division and Expansion
207(22)
6.3 Greatest Common Divisors
229(36)
7 The Resultant
265(32)
7.1 The Resultant Concept
265(24)
7.2 Polynomial Relations for Explicit Algebraic Numbers
289(8)
8 Polynomial Simplification With Side Relations
297(52)
8.1 Multiple Division and Reduction
297(21)
8.2 Equivalence, Simplification, and Ideals
318(16)
8.3 A Simplification Algorithm
334(15)
9 Polynomial Factorization
349(82)
9.1 Square-Free Polynomials and Factorization
350(10)
9.2 Irreducible Factorization: The Classical Approach
360(10)
9.3 Factorization in Zp[ x]
370(29)
9.4 Irreducible Factorization: A Modern Approach
399(32)
Bibliography 431(10)
Index 441
Joel S. Cohen