Muutke küpsiste eelistusi

E-raamat: Construction Management and Design of Industrial Concrete and Steel Structures

  • Formaat: 576 pages
  • Ilmumisaeg: 29-Sep-2010
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781439816004
  • Formaat - PDF+DRM
  • Hind: 138,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 576 pages
  • Ilmumisaeg: 29-Sep-2010
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781439816004

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The recent worldwide boom in industrial construction and the corresponding billions of dollars spent every year in industrial, oil, gas, and petrochemical and power generation project, has created fierce competition for these projects. Strong management and technical competence will bring your projects in on time and on budget. An in-depth exploration of both these aspects and the resulting challenges, Construction Management and Design of Industrial Concrete and Steel Structures provides a practical guide to the design of reinforced concrete and steel structures and foundations in industrial projects.





Renowned expert Mohamed A. El-Reedy covers the entire industrial construction process, from project management to design and construction to sigh off and providing a maintenance plan. Highlighting the differences between industrial construction and real estate or residential construction, he examines every phase and every role, from managerial to technical. He includes cases from industrial projects and covers the international technical practices, codes, and standards used in steel or concrete onshore or offshore projects. The book provides up-to-date methodologies in structure analysis, geotechnical studies, and international special codes and standards for industrial structures such as tanks, foundation under towers, machines, and special structures in industrial projects. It also examines the safety and economic benefits of developing a structure integrity management system.





When a project has a budget that seems as huge at the structure itself, the client, engineering firm, and contractor must work together to achieve success. Discussing the interface between these three main partners, this book outlines strategies for checking the design and controlling a project in all its phases.
Preface xix
Author xxi
1 Introduction
1(4)
2 Construction Management for Industrial Projects
5(62)
2.1 Introduction
5(1)
2.2 Project Characteristics
5(3)
2.3 Project Life Cycle
8(10)
2.3.1 Feasibility Study
10(1)
2.3.2 FEED (Preliminary) Engineering
11(3)
2.3.3 Detail Engineering
14(2)
2.3.4 Design Management
16(1)
2.3.5 Execution Phase
17(1)
2.3.6 Commissioning and Start-Up
17(1)
2.4 Is This Project Successful?
18(1)
2.5 Project Management Tasks
18(2)
2.6 Project Manager Skill
20(1)
2.7 Project Planning
20(7)
2.7.1 Who Will Make the Plan?
22(1)
2.7.2 Where Do You Start the Plan?
23(3)
2.7.3 Work Breakdown Structure
26(1)
2.8 Responsibilities of the Planning Team
27(1)
2.9 Estimating Time Required for an Activity
28(11)
2.9.1 Calculating Time Required for an Activity
30(1)
2.9.2 Time Schedule Preparation
30(1)
2.9.3 Arrow Diagram
31(1)
2.9.4 Precedence Diagram
32(1)
2.9.5 Gantt Chart
32(1)
2.9.6 Critical Path Method
33(1)
2.9.7 Program Evaluation and Review Technique
34(1)
2.9.8 Example
35(1)
2.9.9 Applications for the PERT Method
36(2)
2.9.9.1 Statistical Calculation of Activity Time
38(1)
2.9.9.2 Example
38(1)
2.10 Cost Management
39(20)
2.10.1 Cost Estimate
39(2)
2.10.2 Cost Types
41(1)
2.10.3 Construction Cost Estimate
42(2)
2.10.4 Steel Structure Cost Estimate
44(2)
2.10.5 Detailed Cost
46(1)
2.10.6 Tendering Cost Estimate
46(1)
2.10.7 Cost Estimate to Project Control
46(1)
2.10.8 Economic Analysis of Project Cost
47(1)
2.10.8.1 Work Breakdown Structure
47(1)
2.10.8.2 Organization Breakdown Structure
48(1)
2.10.8.3 OBS and WBS Matrix
48(1)
2.10.8.4 Work Packages
48(2)
2.10.8.5 Cost Control
50(2)
2.10.8.6 The Cost Curve
52(3)
2.10.9 Cash Flow Calculation
55(1)
2.10.9.1 Cash Flow during the Project
56(1)
2.10.9.2 Impact on Increasing Cost
57(1)
2.10.9.3 Project Late Impact
58(1)
2.10.9.4 Impact of Operation Efficiency
58(1)
2.11 Project Risk Management
59(7)
2.11.1 Project Risks
60(1)
2.11.2 Risk Assessment
61(1)
2.11.3 Defining Risk Using Quantitative Risk Assessment
62(2)
2.11.4 Qualitative Risk Assessment
64(2)
References
66(1)
3 Loads on Industrial Structures
67(62)
3.1 Introduction
67(1)
3.2 Loads
67(53)
3.2.1 Dead Load
68(1)
3.2.1.1 General Design Loads
68(7)
3.2.1.2 Pipe Rack
75(1)
3.2.1.3 Ground-Supported Storage Tank Loads
76(1)
3.2.2 Live Loads
77(1)
3.2.3 Wind Loads
78(1)
3.2.3.1 Basic Wind Load Formula
78(3)
3.2.3.2 Wind Loads on Pipe Racks and Open-Frame Structures
81(22)
3.2.4 Earthquake Loads
103(1)
3.2.4.1 Design Spectral Response Acceleration Parameters
104(1)
3.2.4.2 Architectural, Mechanical, and Electrical Components Systems
104(3)
3.2.4.3 HVAC Ductwork
107(1)
3.2.4.4 Piping Systems
108(1)
3.2.4.5 Boilers and Pressure Vessels
109(1)
3.2.4.6 General Precaution
109(1)
3.2.4.7 Building and Nonbuilding Structures
109(5)
3.2.4.8 Flexibility of Piping Attachments
114(1)
3.2.4.9 Design Review for Seismic Loads
115(1)
3.2.5 Impact Loads
116(1)
3.2.6 Thermal Loads
116(1)
3.2.7 Bundle Pull Load
117(1)
3.2.8 Ice Loads
118(1)
3.2.8.1 Site-Specific Studies
118(1)
3.2.8.2 Loads due to Freezing Rain
119(1)
3.2.8.3 Design Ice Thickness for Freezing Rain
120(1)
3.2.8.4 Wind on Ice-Covered Structures
120(1)
3.3 Load Combinations
120(7)
3.3.1 Load Combinations
121(4)
3.3.1.1 Vertical Vessels
125(1)
3.3.1.2 Horizontal Vessels and Heat Exchangers
125(1)
3.3.1.3 Pipe Rack and Pipe Bridge Design
126(1)
3.3.1.4 Ground-Supported Storage Tank Load Combinations
126(1)
3.3.2 Test Combinations
126(1)
References
127(2)
4 Design of Foundations for Vibrating Equipment
129(24)
4.1 Introduction
129(1)
4.2 Machine Requirements
129(1)
4.3 Foundation Design Guidelines
130(16)
4.3.1 Trial Foundation Sizing Guidelines
130(2)
4.3.2 Foundation Dynamic Analysis
132(2)
4.3.3 Soil Parameter
134(12)
4.4 Vibration Isolation
146(5)
4.4.1 Isolating Liners
147(1)
4.4.2 Spring and Rubber Mounts
147(1)
4.4.3 Inertia Block Bolt or Pad Mounting Bolt Installation
148(1)
4.4.4 Grouting
149(2)
4.5 Design Checklist
151(1)
References
151(2)
5 Storage Tank Design
153(46)
5.1 Introduction
153(1)
5.2 Concrete Storage Tanks
153(8)
5.2.1 Rectangular Wall---Concrete
155(3)
5.2.2 Circular Tank
158(3)
5.3 Retaining Wall
161(6)
5.3.1 Preliminary Retaining Wall Dimensions
162(1)
5.3.1.1 Check Stability against Overturning
162(2)
5.3.1.2 Check Stability against Sliding
164(1)
5.3.1.3 Check Stability against Bearing Capacity
164(3)
5.4 Steel Storage Tank
167(20)
5.4.1 Tank Capacity
167(1)
5.4.2 Bottom Plates
168(1)
5.4.3 Annular Bottom Plates
169(1)
5.4.4 Shell Design
170(1)
5.4.4.1 Allowable Stress
171(1)
5.4.4.2 Calculation of Thickness by the 1-Foot Method
171(1)
5.4.4.3 Calculation of Thickness by the Variable-Design-Point Method
172(3)
5.4.5 Roof System
175(2)
5.4.5.1 Allowable Stresses
177(1)
5.4.5.2 Supported Cone Roofs
177(2)
5.4.5.3 Self-Supporting Cone Roofs
179(1)
5.4.5.4 Self-Supporting Dome and Umbrella Roofs
179(1)
5.4.6 Tank Design Loads
180(2)
5.4.7 Load Combination
182(1)
5.4.8 Design Basis for Small Tanks
182(3)
5.4.9 Piping Flexibility
185(1)
5.4.10 Differential Settlement Tank Bottom Designs
186(1)
5.5 Ring Beam Design Consideration
187(11)
5.5.1 Wind and Earthquake Stability and Pressures
191(1)
5.5.2 Earthquake Stability
191(1)
5.5.3 Soil Bearing
191(1)
5.5.4 Soil Pressure (Uplift Is Present)
192(1)
5.5.5 Concrete Ring Beam Design
193(1)
5.5.6 Ring Wall Reinforcement
194(4)
References
198(1)
6 Static Equipment Foundation Design
199(66)
6.1 Introduction
199(1)
6.2 Design Procedure
199(7)
6.2.1 Dead Loads
199(2)
6.2.2 Live Loads
201(1)
6.2.3 Wind Loads
201(1)
6.2.4 Earthquake Loads
201(1)
6.2.5 Bundle Pull Load (Exchangers)
202(1)
6.2.6 Thermal Forces
202(4)
6.2.7 Load Combinations
206(1)
6.3 Anchor Bolts
206(1)
6.4 Slide Plates
206(2)
6.5 Pier Design
208(1)
6.5.1 Anchorage Considerations
208(1)
6.5.2 Reinforcement for Piers
208(1)
6.6 Foundation Design
209(5)
6.6.1 Foundation Reinforcement
210(1)
6.6.1.1 Bottom Reinforcement
210(1)
6.6.1.2 Top Reinforcement
211(3)
6.7 Example: Heat Exchanger Data
214(19)
6.7.1 Design Data
214(1)
6.7.2 Design Criteria
214(1)
6.7.3 Loads Calculation
215(2)
6.7.4 Design Elements
217(1)
6.7.4.1 Size Steel Slide Plate
217(1)
6.7.4.2 Pier Size
218(1)
6.7.4.3 Pier Design
218(3)
6.7.4.4 Footing Size
221(9)
6.7.4.5 Footing Design
230(3)
6.8 Separator Design Example
233(5)
6.8.1 Design Data
233(2)
6.8.2 Loads Calculation
235(1)
6.8.3 Design Elements
236(2)
6.9 Vertical Vessel Foundation Design
238(15)
6.9.1 Dead Loads
238(3)
6.9.2 Pedestal Design
241(3)
6.9.3 Footing Design
244(1)
6.9.4 Soil Bearing on the Octagon Footing
244(5)
6.9.5 Check Stability and Sliding
249(1)
6.9.6 Check for Foundation Sliding
250(1)
6.9.7 Reinforced Concrete Design
250(1)
6.9.7.1 Top Reinforcement
251(1)
6.9.7.2 Shear Consideration
251(2)
6.10 Example for Vertical Vessel
253(6)
6.10.1 Design Data
253(1)
6.10.2 Pedestal Design
254(1)
6.10.3 Anchor Bolt Check
255(1)
6.10.4 Footing Design
256(3)
6.11 Pipe Support
259(4)
References
263(2)
7 Steel Structures in Industry
265(72)
7.1 Introduction
265(1)
7.2 Stress-Strain Behavior of Structural Steel
265(1)
7.3 Design Procedure
266(29)
7.3.1 Tension Members
267(1)
7.3.1.1 Slenderness Ratio
268(3)
7.3.2 Compression Members
271(1)
7.3.2.1 Steps of Preliminary Design
271(10)
7.3.3 Beam Design
281(2)
7.3.3.1 Lateral Torsion Buckling
283(2)
7.3.3.2 Allowable Deflection
285(5)
7.3.4 Design of Beam Column Member (Allowable Stress Design)
290(2)
7.3.5 Design of Beam Column Member (LRFD)
292(3)
7.4 Steel Pipe Rack Design
295(7)
7.4.1 Pipe Rack Design Guide
295(1)
7.4.2 Pipe Rack Superstructure Design
296(1)
7.4.2.1 Structural Steel Expansion
297(5)
7.5 Stairway and Ladders
302(2)
7.5.1 Stairways
302(2)
7.5.2 Handrails and Railings
304(1)
7.6 Crane Supports
304(1)
7.7 Connections
304(17)
7.7.1 Bolts
305(4)
7.7.2 Welding
309(1)
7.7.2.1 Welding Symbols
309(2)
7.7.2.2 Strength of Welds
311(2)
7.7.2.3 Welding in Existing Structures
313(1)
7.7.3 Connection Design
313(7)
7.7.4 Base Plate Design
320(1)
7.8 Anchor Bolt Design
321(13)
7.8.1 Anchor Bolts, Nuts, and Washers
321(1)
7.8.1.1 Anchor Bolts
321(1)
7.8.1.2 Washers
321(1)
7.8.1.3 Sleeves
322(2)
7.8.2 Anchor Bolt Plate Design
324(1)
7.8.3 Coatings and Corrosion
324(1)
7.8.4 Bolt Types, Details, and Layout
325(1)
7.8.4.1 Anchor Bolt Projection
326(1)
7.8.4.2 Edge Distance
327(1)
7.8.4.3 Embedment Depth
328(1)
7.8.5 Calculation of Vessel Anchor Bolts
328(2)
7.8.6 Anchor Bolt Strength Design
330(1)
7.8.6.1 Ultimate Strength Design
331(1)
7.8.6.2 Allowable Stress Design
331(1)
7.8.6.3 Calculate Required Embedment Length
332(1)
7.8.7 Anchor Design Considerations
333(1)
7.8.8 Pretensioning
334(1)
References
334(3)
8 Assessment of Existing Structures
337(40)
8.1 Introduction
337(1)
8.2 Preliminary Inspection
338(8)
8.2.1 Collecting Data
338(2)
8.2.2 Visual Inspection
340(1)
8.2.2.1 Plastic Shrinkage Cracking
341(2)
8.2.2.2 Settlement Cracking
343(1)
8.2.2.3 Drying Shrinkage
344(1)
8.2.2.4 Thermal Stresses
345(1)
8.2.2.5 Chemical Reaction
346(1)
8.3 Detailed Inspection
346(14)
8.3.1 Methods of Structure Assessment
347(1)
8.3.2 Concrete Test Data
348(1)
8.3.2.1 Core Test
348(5)
8.3.2.2 Rebound Hammer
353(1)
8.3.2.3 Ultrasonic Pulse Velocity
354(3)
8.3.2.4 Inherent Variations in In Situ Strength
357(1)
8.3.2.5 Comparison between Different Tests
358(1)
8.3.3 Sources of Concrete Failure
359(1)
8.4 Test Methods for Corroded Steel in Concrete
360(9)
8.4.1 Manual Method
360(1)
8.4.2 Concrete Cover Measurements
361(2)
8.4.3 Half-Cell Potential Measurements
363(2)
8.4.4 Electrical Resistivity Measurement
365(2)
8.4.5 Measurement of Carbonation Depth
367(1)
8.4.6 Chloride Test
367(2)
8.5 Structure Evaluation Technique
369(4)
8.5.1 Case Study One: Structural Evaluation
369(1)
8.5.2 Case Study Two: Structural Assessment
370(2)
8.5.3 Case Study Three: Structural Assessment
372(1)
8.5.4 Case Study Four: Structural Assessment
373(1)
8.6 Structural Assessment
373(1)
References
374(3)
9 Methods of Protecting Foundations from Corrosion
377(26)
9.1 Introduction
377(1)
9.2 Corrosion Inhibitor
378(2)
9.2.1 Anodic Inhibitors
378(1)
9.2.2 Cathodic Inhibitor
379(1)
9.3 Epoxy Coating of Steel Reinforcement
380(2)
9.4 Galvanized Steel Bars
382(2)
9.5 Stainless Steel
384(1)
9.6 Fiber Reinforcement Bars
385(2)
9.7 Protecting Concrete Surfaces
387(3)
9.7.1 Sealers and Membranes
387(1)
9.7.1.1 Coating and Sealers
388(1)
9.7.1.2 Pore Lining
388(1)
9.7.1.3 Pore Blocking
389(1)
9.7.2 Cathodic Protection by Surface Painting
389(1)
9.8 Cathodic Protection System
390(11)
9.8.1 Cathodic Protection
391(2)
9.8.2 Cathodic Protection Components and Design Consideration
393(1)
9.8.2.1 Source of Impressed Current
394(1)
9.8.2.2 Anode System
394(2)
9.8.2.3 Conductive Layer
396(1)
9.8.2.4 Precaution in Anode Design
396(1)
9.8.2.5 Follow-Up Precaution
397(1)
9.8.3 A Comparison between Cathodic Protection and Other Methods
398(1)
9.8.4 Cathodic Protection for the Prestressed Concrete
399(1)
9.8.5 Bond Strength in Case of Cathodic Protection
400(1)
References
401(2)
10 Repair of Industrial Structures
403(28)
10.1 Introduction
403(1)
10.2 Main Steps to Execute Repair
404(5)
10.2.1 Strengthening the Structure
405(1)
10.2.2 Removal of Concrete Cracks
406(2)
10.2.2.1 Manual Method
408(1)
10.2.2.2 Pneumatic Hammer Methods
408(1)
10.2.2.3 Water Jet
409(1)
10.3 Cleaning the Concrete Surface and Steel Rein forcement
409(5)
10.3.1 Concrete
410(1)
10.3.2 Cleaning the Steel Reinforcement Bars
411(3)
10.4 New Patches of Concrete
414(1)
10.4.1 Polymer Mortar
414(1)
10.4.2 Cement Mortar
415(1)
10.5 Execution Methods
415(3)
10.5.1 Manual Method
415(1)
10.5.2 Casting Way at the Site
415(1)
10.5.2.1 Grouted Preplaced Aggregate
416(1)
10.5.2.2 Shotcrete
416(1)
10.5.3 Complete Member Casting
417(1)
10.6 Repair Steps
418(1)
10.7 New Methods for Strengthening Concrete Structures
418(2)
10.8 Using Steel Sections
420(3)
10.9 Fiber-Reinforced Polymer
423(4)
10.9.1 CFRP Types
425(1)
10.9.2 Application on Site
425(2)
10.10 General Precaution
427(1)
References
428(3)
11 Economic Study for Maintenance Plan
431(30)
11.1 Introduction
431(1)
11.2 Basic Rules of Cost Calculation
432(1)
11.2.1 Present Value Method
433(1)
11.3 Repair Time
433(6)
11.3.1 Capacity Loss in Reinforced Concrete Sections
435(2)
11.3.2 Required Time to Corrosion
437(1)
11.3.3 Time Required to Deterioration
438(1)
11.4 Repair and Inspection Strategy and Optimization
439(6)
11.4.1 Repair
441(1)
11.4.2 Expected Total Cost
441(1)
11.4.3 Optimization Strategy
442(3)
11.5 Maintenance Plan
445(13)
11.5.1 Assessment Process
445(4)
11.5.2 RBI Maintenance Plan
449(2)
11.5.3 RBI Plan for Offshore Structures
451(1)
11.5.3.1 Risk Matrix
452(1)
11.5.3.2 Development of Likelihood
453(2)
11.5.3.3 Development of Consequence
455(2)
11.5.3.4 Inspection Planning for Offshore Structure
457(1)
References
458(3)
12 Overview of Fixed Offshore Structures
461(60)
12.1 Introduction
461(1)
12.2 Types of Offshore Platforms
462(6)
12.2.1 Fixed Offshore Platforms
462(1)
12.2.1.1 Drilling or Well Protector Platforms
462(1)
12.2.1.2 Tender Platforms
462(1)
12.2.1.3 Self-Contained Platforms
463(1)
12.2.1.4 Production Platform
463(1)
12.2.1.5 Quarters Platform
463(1)
12.2.1.6 Flare Jacket and Flare Tower
463(1)
12.2.1.7 Auxiliary Platform
463(1)
12.2.1.8 Catwalk
464(1)
12.2.1.9 Heliport
464(1)
12.2.2 Concrete Gravity Platforms
464(1)
12.2.3 Floating Production, Storage, and Offloading
465(2)
12.2.4 Tension Leg Platforms
467(1)
12.3 Major Steps in Constructing an Offshore Structure
468(2)
12.4 Offshore Platform Design Overview
470(31)
12.4.1 Loads
470(1)
12.4.1.1 Gravity Load
470(2)
12.4.1.2 Impact Load
472(1)
12.4.1.3 Wind Load
472(3)
12.4.1.4 Wave Load
475(4)
12.4.1.5 Comparison between Wind and Wave Calculation
479(1)
12.4.1.6 Current Loads
479(1)
12.4.1.7 Earthquake Load
480(1)
12.4.1.8 Other Loads
480(2)
12.4.2 Platform Configuration
482(2)
12.4.3 Approximate Design Dimensions
484(1)
12.4.4 Topside Structures
484(1)
12.4.5 Jacket Design
484(1)
12.4.6 Bracing System
485(3)
12.4.7 In-Place Structure Analysis
488(1)
12.4.8 Dynamic Structure Analysis
489(2)
12.4.9 Tubular Joint Design
491(1)
12.4.9.1 Tubular Joint Calculation
491(2)
12.4.9.2 Tubular Joint Punching Failure
493(1)
12.4.10 Fatigue Analysis
493(2)
12.4.11 Boat Landing
495(1)
12.4.11.1 Calculation of Collison Force
496(2)
12.4.11.2 Cases of Impact Load
498(2)
12.4.11.3 Cases of Impact Load
500(1)
12.5 Design Quality Control
501(1)
12.6 Construction Procedures
501(19)
12.6.1 Engineering of Execution
505(1)
12.6.2 Fabrication
506(1)
12.6.2.1 Joint Fabrication
506(1)
12.6.3 Jacket Assembly
507(1)
12.6.4 Jacket Erection
508(1)
12.6.5 Loads from Transportation, Launch, and Lifting Operations
509(2)
12.6.6 Lifting Forces
511(1)
12.6.7 Loadout Forces
512(1)
12.6.8 Transportation Forces
512(6)
12.6.9 Launching and Upending Forces
518(1)
12.6.10 Installation
519(1)
References
520(1)
13 Soil Investigation and Pile Design
521(24)
13.1 Introduction
521(1)
13.2 Soil Exploration Methods
522(13)
13.2.1 Planning the Program
522(1)
13.2.2 Organization of Fieldwork
523(2)
13.2.3 Soil Boring Methods
525(1)
13.2.3.1 Wash Borings
526(1)
13.2.3.2 Sampling Methods
526(1)
13.2.3.3 Spacing of Borings
527(1)
13.2.3.4 Boring Depth
527(1)
13.2.3.5 Boring Report
528(1)
13.2.4 Standard Penetration Test
528(2)
13.2.5 Cone Penetration Tests
530(1)
13.2.6 Vane Test
531(1)
13.2.7 Cross-Hole Test
532(3)
13.2.7.1 Body Waves
535(1)
13.2.7.2 Surfaces Waves
535(1)
13.3 Deep Foundation
535(8)
13.3.1 Timber Piles
537(1)
13.3.2 Steel Piles
538(1)
13.3.3 Concrete Piles
538(1)
13.3.4 Precast and Prestressed Piles
539(2)
13.3.5 Pile Caps
541(2)
References
543(2)
Index 545
Mohamed A. EI-Reedy's background is in structural engineering. His main area of research is the reliability of concrete and steel structures. He has provided consultation to different oil and gas industries, including international companies such as the International Egyptian Oil Company (IEOC) and British Petroleum (BP). Moreover, he provides different concrete and steel structure design packages for residential buildings, warehouses, and telecommunication towers. He has participated in Liquified Natural Gas (LNG) and Natural Gas Liquid (NGL) projects with international engineering firms. Currently, Dr. EI-Reedy is responsible for reliability, inspection, and maintenance strategy for onshore concrete structures and offshore steel structure platforms. He has performed these tasks for hundreds of structures in the Gulf of Suez in the Red Sea.





Dr. EI-Reedy has consulted with and trained executives at many organizations, has taught technical courses about repair and maintenance for reinforced concrete structures and steel structures worldwide, especially in the Middle East. He has written for numerous publications and presented many papers at local and international conferences sponsored by the American Society of Mechanical Engineers, the American Concrete Institute, the American Society for Testing and Materials, and the American Petroleum Institute.