Muutke küpsiste eelistusi

Covariance and Gauge Invariance in Continuum Physics: Application to Mechanics, Gravitation, and Electromagnetism Softcover Reprint of the Original 1st 2018 ed. [Pehme köide]

  • Formaat: Paperback / softback, 325 pages, kõrgus x laius: 235x155 mm, kaal: 522 g, 16 Illustrations, color; 26 Illustrations, black and white; XI, 325 p. 42 illus., 16 illus. in color., 1 Paperback / softback
  • Sari: Progress in Mathematical Physics 73
  • Ilmumisaeg: 20-Dec-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030062988
  • ISBN-13: 9783030062989
Teised raamatud teemal:
  • Pehme köide
  • Hind: 104,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 122,69 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 325 pages, kõrgus x laius: 235x155 mm, kaal: 522 g, 16 Illustrations, color; 26 Illustrations, black and white; XI, 325 p. 42 illus., 16 illus. in color., 1 Paperback / softback
  • Sari: Progress in Mathematical Physics 73
  • Ilmumisaeg: 20-Dec-2018
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030062988
  • ISBN-13: 9783030062989
Teised raamatud teemal:

This book presents a Lagrangian approach model to formulate various fields of continuum physics, ranging from gradient continuum elasticity to relativistic gravito-electromagnetism. It extends the classical theories based on Riemann geometry to Riemann-Cartan geometry, and then describes non-homogeneous continuum and spacetime with torsion in Einstein-Cartan relativistic gravitation.

It investigates two aspects of invariance of the Lagrangian: covariance of formulation following the method of Lovelock and Rund, and gauge invariance where the active diffeomorphism invariance is considered by using local Poincaré gauge theory according to the Utiyama method.

Further, it develops various extensions of strain gradient continuum elasticity, relativistic gravitation and electromagnetism when the torsion field of the Riemann-Cartan continuum is not equal to zero. Lastly, it derives heterogeneous wave propagation equations within twisted and curved manifolds and proposes a relation between electromagnetic potential and torsion tensor.


General introduction.- Basic concepts on manifolds, spacetimes, and
calculus of variations.- Covariance of Lagrangian density function.- Gauge
invariance for gravitation and gradient continuum.- Topics in continuum
mechanics and gravitation.- Topics in gravitation and
electromagnetism.- General conclusion.- Annexes