Muutke küpsiste eelistusi

Critical Behavior of Non-Ideal Systems [Kõva köide]

(Baltic State Technical University)
  • Formaat: Hardback, 271 pages, kõrgus x laius x paksus: 244x175x18 mm, kaal: 626 g
  • Ilmumisaeg: 23-Jul-2008
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527406581
  • ISBN-13: 9783527406586
Teised raamatud teemal:
  • Kõva köide
  • Hind: 204,45 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Raamatukogudele
  • Formaat: Hardback, 271 pages, kõrgus x laius x paksus: 244x175x18 mm, kaal: 626 g
  • Ilmumisaeg: 23-Jul-2008
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527406581
  • ISBN-13: 9783527406586
Teised raamatud teemal:
This comprehensive systematic overview covers the static and dynamic critical phenomena of real, non-ideal fluids in the nearest vicinity of the critical point, offers new approaches and presents research results on the highest level. Including both theoretical and experimental researches, it also deals with the critical opalescence as phenomenon with continuously growing scattering multiplicity upon approaching the critical point.
Foreword to the Russian Edition v
Foreword to the English Edition viii
Editor's Preface xiii
Introduction 1(6)
Part I The Statics of Critical Phenomena
7(96)
Statics of Critical Phenomena in the Nearest Vicinity of the Critical Point: Experimental Manifestation
9(36)
Short History of Critical Phenomena Research
9(8)
Peculiarities of the Experiment in the Nearest Vicinity of the Critical Point
17(7)
``Experimental'' Critical Indices
17(2)
Determination of Critical Parameters
19(1)
Purity of Matter
20(1)
Determination of Critical Density
21(2)
Determination of Critical Temperature and Pressure
23(1)
Experiments Near the Critical Point in the Presence of the Gravitational Field
24(21)
The Gravitational Effect
25(1)
The Coexistence Curve
26(6)
Singularity of the Diameter of the Coexistence Curve
32(2)
The Critical Isotherm
34(4)
Isothermal Compressibility Along the Critical Isochore
38(4)
(p - T)-Dependence Along the Critical Isochore
42(3)
Critical Indices and Amplitudes
45(44)
Phenomenological Model of the Critical Behavior of Nonideal Systems
45(3)
Critical Indices: External Field Effects
48(21)
Critical Index β
48(1)
The Gravitational Effect
49(1)
The Influence of Surface Forces
50(1)
The Influence of Fields: Comparison with Magnetic Materials
51(2)
Comparison with Metals
53(2)
Critical Index δ
55(1)
The Influence of Gravitation
55(1)
The Influence of Coulomb Forces
56(1)
Critical Index γ
57(1)
The Influence of Gravitation
57(4)
Critical Index α
61(1)
The Influence of Gravitation
61(2)
Critical Index of the Correlation Radius Υ
63(2)
Micellar Systems
65(1)
Influence of Boundaries: Finite-Size Effects
66(1)
Results and Consequences
67(2)
Some Unresolved Problems
69(20)
Critical Indices and Amplitudes
76(1)
Universal Relations Between Critical Indices
76(4)
Universal Relations Between Critical Amplitudes
80(2)
Correlation Between Critical Index and Critical Amplitude Values
82(7)
Thermodynamics of the Metastable State
89(14)
The ``Pseudospinodal'' Hypothesis
89(2)
The History of the Occurrence of the ``Pseudospinodal Hypthesis''
89(1)
The Universal ``Pseudospinodal''
90(1)
The van der Waals Spinodal
91(5)
First-Order Stability Conditions
92(1)
Higher Order Stability Conditions
93(1)
Approaching the Instability Points
94(1)
The Instability Area
95(1)
Thermodynamic Analysis of the ``Pseudospinodal'' Hypothesis
96(4)
Physics and Geometry
96(1)
Mathematical Foundation
97(1)
Thermodynamic Consequences
98(2)
Experimental Test of the ``Pseudospinodal'' Hypothesis
100(3)
Part II The Dynamics of Critical Phenomena
103(116)
Foundations of Critical Dynamics
105(16)
Introduction
105(2)
Critical Fluctuations: Light Scattering Intensity
107(4)
Kinetics of Critical Fluctuations: Light Scattering Spectrum
111(4)
Dynamic Critical Indices and Universal Amplitude
115(3)
Scattering of Higher Orders
118(3)
Critical Opalescence: Modeling
121(44)
Introduction
121(1)
Techniques and Experimental Methods
122(10)
Experimental Setup
123(1)
General Characteristics
123(1)
The Optical System
124(1)
Correlator
125(1)
Time Correlation Function for High Scattering Multiplicities
126(1)
Cumulants of the Correlation Function
127(3)
Afterpulses
130(2)
Physical Modeling
132(14)
Model Systems
132(1)
Dependence of the Spectrum Half-width of Multiple Scattering on the Physical Characteristics of the System and on the Scattering Multiplicity
133(1)
Dependence on the Viscosity of the Fluid
133(3)
Dependence on the Optical Thickness of the Scattering Medium
136(1)
Angular Dependence
136(2)
Dependence on the Polarization Mode
138(2)
Dependence on the Concentration of the Scatterer
140(4)
Dependence on the Dimensions of the Scattering Media
144(2)
Mathematical Modeling
146(1)
The Simplest Diffusion Model Approach
147(1)
The First Approach
147(1)
The Second Approach
147(6)
Mathematical Model of Multiple Scattering
153(1)
Basis Concepts of Radiation-Transport Theory
153(1)
Multiple Scattering Spectra Determined via the Radiation-Transport Theory
154(2)
Transition to High Multiplicity Scattering
156(3)
Effect of the Shape of the Sample on the Mean Scattering Multiplicity
159(3)
On the Nature of the Constant Γ0
162(3)
The Relation of Γ0 to the Size of the Scatterers
162(1)
The Relation of Γ0 to the Depth of the Diffusion Source
163(2)
Critical Opalescence: Theory and Experiment
165(26)
Introduction
165(1)
Theory of Critical Opalescence Spectra
166(11)
Analysis of the Behavior of Γm Close to the Critical Point
166(3)
Calculation of the Limiting Values of Key Quantities
169(3)
Calculation of the Temperature Dependence
172(1)
Analysis of the Obtained Results
173(4)
Experiments Close to the Mixing Critical Point
177(7)
Experimental Setup
177(3)
Choice of the Object of Research
180(1)
Binary Mixture Aniline-Cyclohexane
180(3)
Experimental Results
183(1)
Heating of the ``Critical'' Medium by Probe Radiation
184(7)
Thermal Conductivity in the Vicinity of the Critical Point
191(28)
Introduction
191(3)
Thermal Conductivity of NH3 Near to the Critical Point
194(10)
Experimental Setup for Determining Thermal Conductivity
195(3)
Experimental Results: Background Thermal Conductivity
198(3)
Extended Mode-Coupling (EMC) Theory
201(3)
Static Light Scattering: The Extinction Coefficient
204(4)
The Experimental Setup for Light Scattering
205(1)
Results and Analysis of the Optical Experiment
206(1)
Density Derivative of the Dielectric Constant
207(1)
Determination of Υ and ξ0 Using Light Scattering
208(4)
Critical Dynamics: Comparison of Theory and Experiment
212(4)
Universal Dynamic Amplitude R
213(1)
Thermal Conductivity Critical Index, φ
213(1)
Checking the Feasibility of the Universal Relations Between the Critical Amplitudes for Ammonia
214(1)
Thermal Conductivity of Ammonia in the Wide Neighborhood of the Critical Point
215(1)
Conclusion
216(3)
Some Applications of the Photon Correlation Technique
219(10)
Diffusing-Wave Spectroscopy
219(2)
Method of Determination of the Mean Dimension and Concentration of Suspended Particles
221(3)
Monitoring of Particle Motion in Drying Films
224(1)
Dynamics of Particle Formation and Growth
225(4)
Supercritical Fluids
225(1)
Opaque Systems
226(1)
Sol-Gel Process
226(3)
References 229(20)
Index 249
Dmitry Yu. Ivanov is a professor at the Baltic State Technical University (St. Petersburg, Russia). His research focuses on thermodynamics, critical phenomena and phase transitions, theoretical and experimental investigations of multiple light scattering and correlation spectroscopy in application to Material Science and critical phenomena. His research activities included projects at the Nuclear Research Center in Dubna and Krichevsky Laboratory (Russia) and at the CNRS laboratories and Universities of Paris and Nice (France). He has authored about 70 scientific publications.