Muutke küpsiste eelistusi

E-raamat: Elementary Lectures in Statistical Mechanics

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume is based on courses on Statistical Mechanics which I have taught for many years at the Worcester Polytechnic Institute. My objective is to treat classical statistical mechanics and its modem applications, especially interacting particles, correlation functions, and time-dependent phenomena. My development is based primarily on Gibbs's ensemble formulation. Elementary Lectures in Statistical Mechanics is meant as a (relatively sophis­ ticated) undergraduate or (relatively straightforward) graduate text for physics students. It should also be suitable as a graduate text for physical chemistry stu­ dents. Physicists may find my treatment of algebraic manipulation to be more explicit than some other volumes. In my experience some of our colleagues are perhaps a bit over-enthusiastic about the ability or tendency of our students to complete gaps in the derivations. I emphasize a cyclic development of major themes. I could have begun with a fully detailed formal treatment of ensemble mechanics, as found in Gibbs's volume, and then given material realizations. I instead interleave formal discussions with simple concrete models. The models illustrate the formal definitions. The approach here gives students a chance to identify fundamental principles and methods before getting buried in ancillary details.

Arvustused

FROM THE REVIEWS:



MATHEMATICAL REVIEWS "Critical depth and vivid presentation of concepts are the best qualities of this textbook, which can be recommended for an introductory course in statistical mechanics

Muu info

Springer Book Archives
I Fundamentals: Separable Classical Systems.- Lecture
1. Introduction.-
Lecture
2. Averaging and Statistics.- Lecture
3. Ensembles: Fundamental
Principles of Statistical Mechanics.- Lecture
4. The One-Atom Ideal Gas.-
Aside A. The Two-Atom Ideal Gas.- Lecture
5. N-Atom Ideal Gas.- Lecture
6.
Pressure of an Ideal Gas.- Aside B. How Do Thermometers WorkThe Polythermal
Ensemble.- Lecture
7. Formal Manipulations of the Partition Function.- Aside
C. Gibbss Derivation of.- Lecture
8. Entropy.- Lecture
9. Open Systems;
Grand Canonical Ensemble.- II Separable Quantum Systems.- Lecture
10. The
Diatomic Gas and Other Separable Quantum Systems.- Lecture
11. Crystalline
Solids.- Aside D. Quantum Mechanics.- Lecture
12. Formal Quantum Statistical
Mechanics.- Lecture
13. Quantum Statistics.- Aside E. Kirkwood-Wigner
Theorem.- Lecture
14. Chemical Equilibria.- III Interacting Particles and
Cluster Expansions.- Lecture
15. Interacting Particles.- Lecture
16. Cluster
Expansions.- Lecture
17. ? via the Grand Canonical Ensemble.- Lecture
18.
Evaluating Cluster Integrals.- Lecture
19. Distribution Functions.- Lecture
20. More Distribution Functions.- Lecture
21. Electrolyte Solutions, Plasmas,
and Screening.- IV Correlation Functions and Dynamics.- Lecture
22.
Correlation Functions.- Lecture
23. Stability of the Canonical Ensemble.-
Aside F. The Central Limit Theorem.- Lecture
24. The Langevin Equation.-
Lecture
25. The Langevin Model and Diffusion.- Lecture
26. Projection
Operators and the Mori-Zwanzig Formalism.- Lecture
27. Linear Response
Theory.- V A Research Problem.- Aside G. Scattering of Light, Neutrons,
X-Rays, and Other Radiation.- Lecture
28. Diffusion of Interacting
Particles.- Lecture
29. Interacting Particle Effects.- Lecture
30. Hidden
Correlations.