Muutke küpsiste eelistusi

E-raamat: Encounters with Chaos and Fractals

(Gustavus Adolphus Collete),
  • Formaat: 410 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 10-May-2024
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781003835776
  • Formaat - PDF+DRM
  • Hind: 106,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 410 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 10-May-2024
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781003835776

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Encounters with Chaos and Fractals, Third Edition provides an accessible introduction to chaotic dynamics and fractal geometry. It incorporates important mathematical concepts and backs up the definitions and results with motivation, examples, and applications.

The third edition updates this classic book for a modern audience. New applications on contemporary topics, like data science and mathematical modeling, appear throughout. Coding activities are transitioned to open-source programming languages, including Python.

The text begins with examples of mathematical behavior exhibited by chaotic systems, first in one dimension and then in two and three dimensions. Focusing on fractal geometry, the authors introduce famous, infinitely complicated fractals. How to obtain computer renditions of them is explained. The book concludes with Julia sets and the Mandelbrot set.

The Third Edition includes:





More coding activities incorporated in each section with expanded code to include pseudo-code, with specific examples in MATLAB® (or its open-source cousin Octave) and Python Additional exercisesmany updatedfrom previous editions Proof-writing exercises for a more theoretical course Revised sections to include historical context Short sections added to explain applied problems in developing mathematics

This edition reveals how these ideas are continuing to be applied in the 21st century, while connecting to the long and winding history of dynamical systems. The primary focus is the beauty and diversity of these ideas. Offering more than enough material for a one-semester course, the authors show how these subjects continue to grow within mathematics and in many other disciplines.

Chapter
1. Periodic Points.
Chapter
2. One-Dimensional Chaos.
Chapter
3. Two-Dimensional Chaos.
Chapter
4. Systems of Differential Equations.
Chapter
5. Introduction to Fractals.
Chapter
6. Creating Fractal Sets.
Chapter
7. Complex Fractals: Julia Sets and The Mandelbrot.

Denny Gulick is Professor Emeritus in the Department of Mathematics at the University of Maryland. His research interests include operator theory and fractal geometry. He earned a PhD from Yale University.

Jeff Ford is a Visiting Assistant Professor of Mathematics at Gustavus Adolphus College. He earned his Bachelors degree from Gustavus Adolphus College, his Masters degree in mathematics from Minnesota State University-Mankato, and his Ph.D. in mathematics from Auburn University, studying under Dr. Krystyna Kuperberg. Jeff is interested in the existence of volume-preserving dynamical systems with unique properties. Jeff uses and assesses a variety of active learning techniques in his class including inquiry-based learning and team-based learning. His scholarship in this area centers on understanding how active learning techniques improve confidence and reduce anxiety in undergraduate students.