Muutke küpsiste eelistusi

Engineering Noise Control 5th edition [Kõva köide]

(University of Adelaide, Australia), (University of Adelaide, Australia),
  • Formaat: Hardback, 854 pages, kõrgus x laius: 254x178 mm, kaal: 1678 g, 141 Tables, black and white; 273 Line drawings, black and white
  • Ilmumisaeg: 14-Nov-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138306908
  • ISBN-13: 9781138306905
Teised raamatud teemal:
  • Kõva köide
  • Hind: 205,75 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 854 pages, kõrgus x laius: 254x178 mm, kaal: 1678 g, 141 Tables, black and white; 273 Line drawings, black and white
  • Ilmumisaeg: 14-Nov-2017
  • Kirjastus: CRC Press
  • ISBN-10: 1138306908
  • ISBN-13: 9781138306905
Teised raamatud teemal:

This classic and authoritative student textbook contains information that is not over simplified and can be used to solve the real world problems encountered by noise and vibration consultants as well as the more straightforward ones handled by engineers and occupational hygienists in industry. The book covers the fundamentals of acoustics, theoretical concepts and practical application of current noise control technology. It aims to be as comprehensive as possible while still covering important concepts in sufficient detail to engender a deep understanding of the foundations upon which noise control technology is built.

Topics which are extensively developed or overhauled from the fourth edition include sound propagation outdoors, amplitude modulation, hearing protection, frequency analysis, muffling devices (including 4-pole analysis and self noise), sound transmission through partitions, finite element analysis, statistical energy analysis and transportation noise. For those who are already well versed in the art and science of noise control, the book will provide an extremely useful reference. A wide range of example problems that are linked to noise control practice are available on www.causalsystems.com for free download.

Arvustused

"This book is one of Australias finest exports."

-- Todd Busch in Journal of the Audio Engineering Society

"A nice balance has been achieved between the theoretical background needed for a good understanding, and practical applications.

Furthermore, the choice of topics and the way they are treated makes this book suitable for both engineering students wanting some more material pertaining to their studies and confirmed old salt acoustical engineers wanting to upgrade their skills."

-- Marc Asselineau, Peutz & Associates

"The 5th edition of this book is a thoroughly updated and re-organized textbook in comparison with the previous editions... It contains a fair amount of new material, with many conceptual illustrations and extensive references. The book represents a comprehensive handling of the state of the art of important topics in acoustics and noise control engineering, and brings together a lot of relevant practical information, presented by authors with much knowledge and practical experience. The book represents a compilation of conventional and advanced material, including many useful calculation details, hints, and instructions, valuable to both academics and acoustical consultants as well as noise control engineers."

--Ning Xiang, Rensselaer Polytechnic Institute, USA in Journal of the Acoustical Society of America

Preface to the First Edition xxi
Preface to the Fourth Edition xxiii
Preface to the Fifth Edition xxv
Acknowledgments xxvii
1 Fundamentals and Basic Terminology 1(48)
1.1 Introduction
1(2)
1.2 Noise Control Strategies
3(8)
1.2.1 Sound Source Modification
5(2)
1.2.2 Control of the Transmission Path
7(1)
1.2.3 Modification of the Receiver
7(1)
1.2.4 Existing Facilities
7(2)
1.2.5 Facilities in the Design Stage
9(1)
1.2.6 Airborne versus Structure-Borne Noise
10(1)
1.3 Acoustic Field Variables
11(6)
1.3.1 Variables
11(1)
1.3.2 Acoustic Field
12(1)
1.3.3 Magnitudes
13(1)
1.3.4 Speed of Sound
13(2)
1.3.5 Dispersion
15(1)
1.3.6 Acoustic Potential Function
16(1)
1.4 Wave Equation
17(8)
1.4.1 Plane and Spherical Waves
18(1)
1.4.2 Plane Wave Propagation
18(4)
1.4.3 Spherical Wave Propagation
22(2)
1.4.4 Wave Summation
24(1)
1.4.5 Plane Standing Waves
24(1)
1.4.6 Spherical Standing Waves
25(1)
1.5 Mean Square Quantities
25(1)
1.6 Energy Density
26(1)
1.7 Sound Intensity
27(3)
1.7.1 Definitions
27(2)
1.7.2 Plane Wave and Far Field Intensity
29(1)
1.7.3 Spherical Wave Intensity
29(1)
1.8 Sound Power
30(1)
1.9 Units
30(3)
1.10 Combining Sound Pressures
33(4)
1.10.1 Coherent and Incoherent Sounds
33(1)
1.10.2 Addition of Coherent Sound Pressures
33(1)
1.10.3 Addition of Incoherent Sounds (Logarithmic Addition)
34(2)
1.10.4 Subtraction of Sound Pressure Levels
36(1)
1.10.5 Combining Level Reductions
36(1)
1.11 Beating
37(1)
1.12 Amplitude Modulation and Amplitude Variation
38(2)
1.13 Basic Frequency Analysis
40(4)
1.14 Doppler Shift
44(1)
1.15 Impedance
45(1)
1.15.1 Mechanical Impedance, Zm
45(1)
1.15.2 Specific Acoustic Impedance, Z8
45(1)
1.15.3 Acoustic Impedance, ZA
46(1)
1.16 Flow Resistance
46(3)
2 Human Hearing and Noise Criteria 49(86)
2.1 Brief Description of the Ear
49(20)
2.1.1 External Ear
50(1)
2.1.2 Middle Ear
50(1)
2.1.3 Inner Ear
51(1)
2.1.4 Cochlear Duct or Partition
52(2)
2.1.5 Hair Cells
54(1)
2.1.6 Neural Encoding
55(1)
2.1.7 Linear Array of Uncoupled Oscillators
56(2)
2.1.8 Mechanical Properties of the Central Partition
58(13)
2.1.8.1 Basilar Membrane Travelling Wave
58(2)
2.1.8.2 Energy Transport and Group Speed
60(1)
2.1.8.3 Undamping
61(1)
2.1.8.4 The Half-Octave Shift
62(3)
2.1.8.5 Frequency Response
65(1)
2.1.8.6 Critical Frequency Band
65(4)
2.1.8.7 Frequency Resolution
69(1)
2.2 Noise-Induced Hearing Loss
69(2)
2.3 Subjective Response to Sound Pressure Level
71(12)
2.3.1 Masking
71(3)
2.3.2 Loudness
74(1)
2.3.3 Comparative Loudness and the Phon
75(1)
2.3.4 Low-Frequency Loudness
76(3)
2.3.5 Relative Loudness and the Sone
79(2)
2.3.6 Pitch
81(2)
2.4 Weighting Networks
83(1)
2.5 Noise Measures
84(6)
2.5.1 Equivalent Continuous Noise Level, Leq
84(1)
2.5.2 A-Weighted Equivalent Continuous Noise Level, LAeq
84(4)
2.5.2.1 Noise Exposure Level, LEX.8h or Lex or Lep'd
85(1)
2.5.2.2 A-Weighted Sound Exposure, EA,T
86(1)
2.5.2.3 A-Weighted Sound Exposure Level, LAE or SEL
87(1)
2.5.3 Day-Night Average Sound Level, Ldn or DNL
88(1)
2.5.4 Community Noise Equivalent Level, Lden or CNEL
88(1)
2.5.5 Effective Perceived Noise Level, LEPN or EPNL
88(1)
2.5.6 Statistical Descriptors
89(1)
2.5.7 Other Descriptors
89(1)
2.6 Hearing Loss
90(2)
2.6.1 Threshold Shift
90(1)
2.6.2 Presbyacusis
90(1)
2.6.3 Hearing Damage
91(1)
2.7 Hearing Damage Risk
92(11)
2.7.1 Requirements for Speech Recognition
93(1)
2.7.2 Quantifying Hearing Damage Risk
93(1)
2.7.3 International Standards Organisation Formulation
94(3)
2.7.4 Alternative Formulations
97(2)
2.7.4.1 Bies and Hansen Formulation
97(1)
2.7.4.2 Dresden Group Formulation
98(1)
2.7.5 Observed Hearing Loss
99(1)
2.7.6 Some Alternative Interpretations
99(4)
2.8 Hearing Damage Risk Criteria
103(3)
2.8.1 Continuous Noise
103(1)
2.8.2 Impulse Noise
103(1)
2.8.3 Impact Noise
104(2)
2.9 Implementing a Hearing Conservation Program
106(1)
2.10 Hearing Protection Devices
107(8)
2.10.1 Noise Reduction Rating, NRR
108(1)
2.10.2 Noise Reduction Rating Subjective Fit, NRR(SF)
109(1)
2.10.3 Noise Level Reduction Statistic, NRSAx
109(1)
2.10.4 Single Number Rating, SNR
110(2)
2.10.5 Sound Level Conversion, SLC80
112(1)
2.10.6 Standard Deviation
113(1)
2.10.7 Degradation of Effectiveness from Short Lapses
113(1)
2.10.8 Overprotection
114(1)
2.11 Speech Interference Criteria
115(1)
2.11.1 Broadband Background Noise
115(1)
2.11.2 Intense Tones
116(1)
2.12 Psychological Effects of Noise
116(1)
2.12.1 Noise as a Cause of Stress
116(1)
2.12.2 Effect on Behaviour and Work Efficiency
117(1)
2.13 Ambient Noise Level Specification
117(11)
2.13.1 Noise Weighting Curves
119(7)
2.13.1.1 NR Curves
119(1)
2.13.1.2 NC Curves
120(1)
2.13.1.3 RC Curves
121(2)
2.13.1.4 NCB Curves
123(1)
2.13.1.5 RNC Curves
124(2)
2.13.2 Comparison of Noise Weighting Curves with dBA Specifications
126(1)
2.13.3 Speech Privacy
127(1)
2.14 Environmental Noise Criteria
128(2)
2.14.1 A-Weighting Criteria
128(2)
2.15 Environmental Noise Surveys
130(5)
2.15.1 Measurement Locations
130(1)
2.15.2 Duration of the Measurement Survey
131(1)
2.15.3 Measurement Parameters
132(1)
2.15.4 Noise Impact
132(3)
3 Instrumentation for Noise Measurement and Analysis 135(36)
3.1 Microphones
135(8)
3.1.1 Condenser Microphone
136(2)
3.1.2 Piezoelectric Microphone
138(1)
3.1.3 Pressure Response
139(1)
3.1.4 Microphone Sensitivity
140(1)
3.1.5 Field Effects and Calibration
140(2)
3.1.6 Microphone Accuracy
142(1)
3.1.7 Infrasound Sensors
143(1)
3.2 Sound Level Meters (SLMs)
143(1)
3.3 Classes of Sound Level Meter
144(1)
3.4 Sound Level Meter Calibration
144(1)
3.4.1 Electrical Calibration
145(1)
3.4.2 Acoustic Calibration
145(1)
3.4.3 Measurement Accuracy
145(1)
3.5 Noise Measurements Using Sound Level Meters
145(3)
3.5.1 Microphone Mishandling
146(1)
3.5.2 Sound Level Meter Amplifier Mishandling
146(1)
3.5.3 Microphone and Sound Level Meter Response Characteristics
146(1)
3.5.4 Background Noise
146(1)
3.5.5 Wind Noise
146(1)
3.5.6 Temperature
147(1)
3.5.7 Humidity and Dust
147(1)
3.5.8 Reflections from Nearby Surfaces
148(1)
3.6 Time-Varying Sound
148(1)
3.7 Noise Level Measurement
148(1)
3.8 Data Loggers
148(2)
3.9 Personal Sound Exposure Meter
150(1)
3.10 Recording of Noise
151(1)
3.11 Spectrum Analysers
151(1)
3.12 Sound Intensity Meters
152(8)
3.12.1 Sound Intensity by the p-u Method
153(2)
3.12.1.1 Accuracy of the p-u Method
154(1)
3.12.2 Sound Intensity by the p-p Method
155(4)
3.12.2.1 Accuracy of the p-p Method
157(2)
3.12.3 Frequency Decomposition of the Intensity
159(2)
3.12.3.1 Direct Frequency Decomposition
159(1)
3.12.3.2 Indirect Frequency Decomposition
159(1)
3.13 Energy Density Sensors
160(1)
3.14 Sound Source Localisation
161(10)
3.14.1 Near-field Acoustic Holography (NAH)
162(3)
3.14.1.1 Summary of the Underlying Theory
163(2)
3.14.2 Statistically Optimised Near-field Acoustic Holography (SONAH)
165(2)
3.14.3 Helmholtz Equation Least Squares Method (HELS)
167(1)
3.14.4 Beamforming
167(2)
3.14.4.1 Summary of the Underlying Theory
168(1)
3.14.5 Direct Sound Intensity Measurement
169(2)
4 Sound Sources and Sound Power 171(54)
4.1 Introduction
171(1)
4.2 Simple Source
172(3)
4.2.1 Pulsating Sphere
173(2)
4.2.2 Fluid Mechanical Monopole Source
175(1)
4.3 Dipole Source
175(7)
4.3.1 Pulsating Doublet or Dipole (Far-Field Approximation)
176(2)
4.3.2 Pulsating Doublet or Dipole (Near Field)
178(2)
4.3.3 Oscillating Sphere
180(2)
4.3.4 Fluid Mechanical Dipole Source
182(1)
4.4 Quadrupole Source (Far-Field Approximation)
182(4)
4.4.1 Lateral Quadrupole
184(1)
4.4.2 Longitudinal Quadrupole
185(1)
4.4.3 Fluid Mechanical Quadrupole Source
185(1)
4.5 Line Source
186(3)
4.5.1 Infinite Line Source
186(2)
4.5.2 Finite Line Source
188(1)
4.6 Piston in an Infinite Baffle
189(6)
4.6.1 Far Field
189(2)
4.6.2 Near Field On-Axis
191(2)
4.6.3 Radiation Load of the Near Field
193(2)
4.7 Incoherent Plane Radiator
195(4)
4.7.1 Single Wall
195(4)
4.7.2 Several Walls of a Building or Enclosure
199(1)
4.8 Directivity
199(1)
4.9 Reflection Effects
200(2)
4.9.1 Simple Source Near a Reflecting Surface
200(1)
4.9.2 Observer Near a Reflecting Surface
201(1)
4.9.3 Observer and Source Both Close to a Reflecting Surface
201(1)
4.10 Radiation Impedance
202(2)
4.11 Relation between Sound Power and Sound Pressure
204(1)
4.12 Radiation Field of a Sound Source
205(2)
4.12.1 Sound Field Produced in an Enclosure
207(1)
4.13 Determination of Sound Power Using Sound Intensity Measurements
207(1)
4.14 Determination of Sound Power Using Sound Pressure Measurements
208(13)
4.14.1 Measurement in Free or Semi-free Field
208(5)
4.14.1.1 Measurement of Gas Turbine Exhaust Sound Power
212(1)
4.14.2 Measurement in a Diffuse Field
213(2)
4.14.2.1 Substitution Met hod
214(1)
4.14.2.2 Absolute Method
214(1)
4.14.3 Field Measurement
215(8)
4.14.3.1 Semi-reverberant Field Measurements by Method One
215(1)
4.14.3.2 Semi-reverberant Field Measurements by Method Two
216(1)
4.14.3.3 Semi-reverberant Field Measurements by Method Three
217(1)
4.14.3.4 Near-Field Measurements
218(3)
4.15 Determination of Sound Power Using Surface Vibration Measurement
221(2)
4.16 Some Uses of Sound Power Information
223(2)
4.16.1 Far Free Field
223(1)
4.16.2 Near Free Field
223(2)
5 Sound Propagation 225(90)
5.1 Introduction
225(1)
5.2 Reflection and Transmission: Plane Interface between Two Different Media
225(12)
5.2.1 Porous Ground
226(1)
5.2.2 Plane Wave Reflection and Transmission
226(5)
5.2.3 Spherical Wave Reflection at a Plane Interface
231(4)
5.2.4 Effects of Turbulence
235(2)
5.3 Sound Propagation Outdoors-General Concepts
237(38)
5.3.1 Geometrical Spreading, Adiv
238(1)
5.3.2 Atmospheric Absorption, Aa
239(1)
5.3.3 Ground Effect, Ag
240(4)
5.3.4 Meteorological Effects, Amet
244(20)
5.3.4.1 Direct Calculation of the Sonic Gradient
246(3)
5.3.4.2 Indirect Calculation of the Sonic Gradient
249(6)
5.3.4.3 Calculation of Ray Path Lengths and Propagation Times
255(4)
5.3.4.4 Ground-Reflected Rays-Single Ground Reflection
259(1)
5.3.4.5 Ground-Reflected Rays-Multiple Ground Reflections
259(1)
5.3.4.6 Low-Level Jets (LLJs)
260(1)
5.3.4.7 Meteorological Attenuation: Parkin and Scholes (1965)
261(1)
5.3.4.8 Attenuation in the Shadow Zone (Negative Sonic Gradient)
262(2)
5.3.5 Barrier Effects, Ab
264(1)
5.3.6 Diffraction at the Edge of a Thin Sheet
264(2)
5.3.7 Outdoor Barriers
266(8)
5.3.7.1 Thick Barriers
270(3)
5.3.7.2 Shielding by Terrain
273(1)
5.3.7.3 Effects of Wind and Temperature Gradients
273(1)
5.3.8 Miscellaneous Effects, Amisc
274(1)
5.3.9 Low-Frequency Noise and Infrasound
274(1)
5.4 Propagation Modelling Approach
275(1)
5.5 CONCAWE Noise Propagation Model
276(5)
5.5.1 Geometrical Spreading, K1
276(1)
5.5.2 Atmospheric Absorption, K2
276(1)
5.5.3 Ground Effects, K3
276(1)
5.5.4 Meteorological Effects, K4
276(2)
5.5.5 Source Height Effects, K5
278(1)
5.5.6 Barrier Attenuation, K6
279(1)
5.5.7 In-Plant Screening, K7
280(1)
5.5.8 Vegetation Screening, Kv
280(1)
5.5.9 Limitations of the CONCAWE Model
280(1)
5.6 ISO 9613-2 (1996) Noise Propagation Model
281(7)
5.6.1 Ground Effects, Ag
282(1)
5.6.2 Meteorological Effects, Amet
283(1)
5.6.3 Barrier Attenuation, Ab
283(2)
5.6.4 Vegetation Screening, Af
285(1)
5.6.5 Effect of Reflections Other than Ground Reflections
286(1)
5.6.6 Limitations of the ISO 9613-2 Model
287(1)
5.7 NMPB-2008 Noise Propagation Model
288(10)
5.7.1 Ground, Barrier and Terrain Excess Attenuation, Ag+b
289(8)
5.7.1.1 Mean Ground Plane
289(1)
5.7.1.2 Ground Effect with No Diffraction
290(1)
5.7.1.3 Ground Effect: Homogeneous Atmosphere, No Diffraction
291(1)
5.7.1.4 Ground Effect: Downward Refraction, No Diffraction
291(1)
5.7.1.5 Diffraction with No Ground Effect
292(2)
5.7.1.6 Diffraction with Ground Effect
294(3)
5.7.1.7 Vertical Edge Diffraction with Ground Effect
297(1)
5.7.2 Reflections from Vertical Surfaces
297(1)
5.7.3 Limitations of the NMPB-2008 Model
297(1)
5.8 Harmonoise (2002) Noise Propagation Engineering Model
298(12)
5.8.1 Combination of Sound Waves from the Same Source
300(2)
5.8.2 Coordinate Transformation for the Ground Profile
302(1)
5.8.3 Approximating Terrain Profiles by Straight Line Segments
303(2)
5.8.4 Ground, Barrier and Terrain Excess Attenuation, Ag+b
305(1)
5.8.5 Excess Attenuation, Asc, Due to Scattering
305(1)
5.8.5.1 Excess Attenuation, Asc,f, Due to Scattering through Trees
305(1)
5.8.5.2 Excess Attenuation, Asc,t, Due to Atmospheric Turbulence
306(1)
5.8.6 Excess Attenuation, Ar, Due to Reflection from a Facade or Building
306(3)
5.8.7 Limitations of the Harmonoise Model
309(1)
5.9 Required Input Data for the Various Propagation Models
310(2)
5.9.1 CONCAWE
310(1)
5.9.2 ISO 9613-2
311(1)
5.9.3 NMPB-2008
311(1)
5.9.4 Harmonoise
312(1)
5.10 Propagation Model Prediction Uncertainty
312(3)
5.10.1 Type A Standard Uncertainty
313(1)
5.10.2 Type B Standard Uncertainty
313(1)
5.10.3 Combining Standard Uncertainties
313(1)
5.10.4 Expanded Uncertainty
314(1)
6 Sound in Enclosed Spaces 315(48)
6.1 Introduction
315(2)
6.1.1 Wall-Interior Modal Coupling
316(1)
6.1.2 Sabine Rooms
316(1)
6.1.3 Flat and Long Rooms
317(1)
6.2 Low Frequencies
317(5)
6.2.1 Rectangular Rooms
318(4)
6.2.2 Cylindrical Rooms
322(1)
6.3 Boundary between Low-Frequency and High-Frequency Behaviour
322(3)
6.3.1 Modal Density
322(1)
6.3.2 Modal Damping and Bandwidth
323(1)
6.3.3 Modal Overlap
324(1)
6.3.4 Crossover Frequency
325(1)
6.4 High Frequencies, Statistical Analysis
325(4)
6.4.1 Effective Intensity in a Diffuse Field
325(2)
6.4.2 Energy Absorption at Boundaries
327(1)
6.4.3 Air Absorption
327(1)
6.4.4 Steady-State Response
328(1)
6.5 Transient Response
329(5)
6.5.1 Classical Description
329(1)
6.5.2 Modal Description
330(2)
6.5.3 Empirical Description
332(2)
6.5.4 Mean Free Path
334(1)
6.6 Measurement of the Room Constant
334(2)
6.6.1 Reference Sound Source Method
335(1)
6.6.2 Reverberation Time Method
335(1)
6.7 Porous Sound Absorbers
336(6)
6.7.1 Measurement of Absorption Coefficients
336(1)
6.7.2 Noise Reduction Coefficient (NRC)
337(1)
6.7.3 Porous Liners
337(4)
6.7.4 Porous Liners with Perforated Panel Facings
341(1)
6.7.5 Sound Absorption Coefficients of Materials in Combination
342(1)
6.8 Panel Sound Absorbers
342(4)
6.8.1 Empirical Method
343(1)
6.8.2 Analytical Method
344(2)
6.9 Flat and Long Rooms
346(13)
6.9.1 Flat Room with Specularly Reflecting Floor and Ceiling
348(2)
6.9.2 Flat Room with Diffusely Reflecting Floor and Ceiling
350(3)
6.9.3 Flat Room with Specularly and Diffusely Reflecting Boundaries
353(2)
6.9.4 Long Room with Specularly Reflecting Walls
355(2)
6.9.5 Long Room: Circular Cross Section, Diffusely Reflecting Wall
357(1)
6.9.6 Long Room with Rectangular Cross Section
358(1)
6.10 Applications of Sound Absorption
359(4)
6.10.1 Relative Importance of the Reverberant Field
359(1)
6.10.2 Reverberation Control
360(3)
7 Partitions, Enclosures and Barriers 363(60)
7.1 Introduction
363(1)
7.2 Sound Transmission through Partitions
364(34)
7.2.1 Bending Waves
364(4)
7.2.2 Transmission Loss
368(5)
7.2.2.1 Single Number Ratings for Transmission Loss of Partitions
370(3)
7.2.3 Impact Isolation
373(2)
7.2.3.1 Additional Impact Sound Isolation Rating Procedure
375(1)
7.2.4 Panel Transmission Loss (or Sound Reduction Index) Estimates
375(10)
7.2.4.1 Sharp's Prediction Scheme for Isotropic Panels
379(3)
7.2.4.2 Davy's Prediction Scheme for Isotropic Panels
382(1)
7.2.4.3 EN12354-1 (2000) Prediction Scheme for Isotropic Panels
383(1)
7.2.4.4 Thickness Correction for Isotropic Panels
383(1)
7.2.4.5 Orthotropic Panels
384(1)
7.2.5 Sandwich Panels
385(1)
7.2.6 Double Wall Transmission Loss
385(12)
7.2.6.1 Sharp Model for Double Wall TL
386(4)
7.2.6.2 Davy Model for Double Wall TL
390(4)
7.2.6.3 Model from EN12354-1 (2000)
394(1)
7.2.6.4 Stud Spacing Effect in Walls with Wooden Studs
394(1)
7.2.6.5 Staggered Studs
395(1)
7.2.6.6 Panel Damping
395(1)
7.2.6.7 Effect of Cavity Material Flow Resistance
395(1)
7.2.6.8 Multi-leaf and Composite Panels
395(1)
7.2.6.9 TL Properties of Some Common Stud Wall Constructions
396(1)
7.2.7 Triple Wall Sound Transmission Loss
397(1)
7.2.8 Common Building Materials
398(1)
7.2.9 Sound-Absorptive Linings
398(1)
7.3 Noise Reduction vs Transmission Loss
398(9)
7.3.1 Combined Transmission Loss
398(8)
7.3.2 Flanking Transmission Loss
406(1)
7.4 Enclosures
407(13)
7.4.1 Noise Inside Enclosures
407(1)
7.4.2 Noise Outside Enclosures
407(3)
7.4.3 Personnel Enclosures
410(2)
7.4.4 Enclosure Windows
412(1)
7.4.5 Enclosure Leakages
412(2)
7.4.6 Enclosure Access and Ventilation
414(1)
7.4.7 Enclosure Vibration Isolation
415(1)
7.4.8 Enclosure Resonances
415(1)
7.4.9 Close-Fitting Enclosures
416(1)
7.4.10 Partial Enclosures
417(2)
7.4.11 Indoor Barriers
419(1)
7.5 Pipe Lagging
420(3)
7.5.1 Porous Material Lagging
420(1)
7.5.2 Impermeable Jacket and Porous Blanket Lagging
420(3)
8 Muffling Devices 423(104)
8.1 Introduction
423(1)
8.2 Measures of Performance
424(1)
8.3 Design for a Required Performance
425(2)
8.4 Diffusers as Muffling Devices
427(1)
8.5 Classification of Muffling Devices
427(2)
8.6 Acoustic Impedance
429(1)
8.7 Lumped Element Devices
429(8)
8.7.1 Impedance of an Orifice or a Short Narrow Duct
430(6)
8.7.1.1 End Correction
432(3)
8.7.1.2 Acoustic Resistance
435(1)
8.7.2 Impedance of a Volume
436(1)
8.8 Reactive Devices
437(22)
8.8.1 Acoustical Analogues of Kirchhoff's Laws
437(1)
8.8.2 Side Branch Resonator
438(8)
8.8.2.1 End Corrections
440(1)
8.8.2.2 Quality Factor
441(1)
8.8.2.3 Insertion Loss Due to Side Branch
442(1)
8.8.2.4 Transmission Loss Due to Side Branch
443(3)
8.8.3 Resonator Mufflers
446(2)
8.8.4 Expansion Chamber
448(5)
8.8.4.1 Insertion Loss
448(3)
8.8.4.2 Transmission Loss
451(2)
8.8.5 Small Engine Exhaust
453(1)
8.8.6 Low-pass Filter
454(5)
8.9 4-Pole Method
459(24)
8.9.1 Acoustic Performance Metrics
461(1)
8.9.2 4-Pole Matrices of Various Acoustic Elements
462(1)
8.9.3 Straight Duct
462(1)
8.9.4 Quarter-Wavelength Tube (QWT)
463(3)
8.9.5 Helmholtz Resonators
466(1)
8.9.6 Sudden Expansion and Contraction
466(2)
8.9.7 Simple Expansion Chamber (SEC)
468(1)
8.9.8 Double-Tuned Expansion Chamber (DTEC)
469(3)
8.9.9 Concentric Tube Resonator (CTR)
472(5)
8.9.10 Exhaust Gas Temperature Variations
477(4)
8.9.11 Source and Termination Impedances
481(2)
8.10 Lined Duct Attenuation of Sound
483(17)
8.10.1 Locally-Reacting and Bulk-Reacting Liners
484(1)
8.10.2 Liner Specifications
484(2)
8.10.3 Lined Duct Mufflers
486(11)
8.10.3.1 Flow Effects
491(2)
8.10.3.2 Temperature Effects
493(1)
8.10.3.3 Higher Order Mode Propagation
493(4)
8.10.4 Cross-Sectional Discontinuities
497(1)
8.10.5 Splitter Mufflers
497(3)
8.11 Insertion Loss of Duct Bends or Elbows
500(1)
8.12 Insertion Loss of Unlined Ducts
500(1)
8.13 Effect of Duct End Reflections
500(2)
8.14 Pressure Loss Calculations for Muffling Devices
502(5)
8.14.1 Pressure Losses Due to Friction
502(1)
8.14.2 Dynamic Pressure Losses
503(1)
8.14.3 Splitter Muffler Pressure Loss
503(3)
8.14.4 Circular Muffler Pressure Loss
506(1)
8.14.5 Staggered Splitter Pressure Loss
507(1)
8.15 Flow-Generated Noise
507(5)
8.15.1 Straight, Unlined Air Duct Noise Generation
508(1)
8.15.2 Mitred Bend Noise Generation
508(2)
8.15.3 Splitter Muffler Self-Noise Generation
510(2)
8.15.4 Exhaust Stack Pin Noise
512(1)
8.15.5 Self-Noise Generation of Air Conditioning System Elements
512(1)
8.16 Duct Break-Out Noise
512(3)
8.16.1 Break-Out Sound Transmission
512(2)
8.16.2 Break-In Sound Transmission
514(1)
8.17 Lined Plenum Attenuator
515(3)
8.17.1 Wells' Method
515(1)
8.17.2 ASHRAE (2015) Method
516(1)
8.17.3 More Complex Methods
516(2)
8.18 Water Injection
518(2)
8.19 Directivity of Exhaust Ducts
520(7)
8.19.1 Effect of Exhaust Gas Temperature on Directivity
525(1)
8.19.2 Effect of Wind on Directivity
526(1)
9 Vibration Control 527(36)
9.1 Introduction
527(1)
9.2 Vibration Isolation
528(15)
9.2.1 Single-Degree-of-Freedom Systems
529(7)
9.2.1.1 Surging in Coil Springs
535(1)
9.2.2 Four-Isolator Systems
536(2)
9.2.3 Two-Stage Vibration Isolation
538(1)
9.2.4 Practical Considerations for Isolators
539(4)
9.2.4.1 Effect of Stiffness of Equipment Mounted on Isolators
542(1)
9.2.4.2 Effect of Stiffness of Foundations
542(1)
9.2.4.3 Superimposed Loads on Isolators
543(1)
9.3 Types of Isolators
543(3)
9.3.1 Rubber
544(1)
9.3.2 Metal Springs
544(1)
9.3.3 Cork
545(1)
9.3.4 Felt
545(1)
9.3.5 Air Springs
546(1)
9.4 Vibration Absorbers
546(4)
9.5 Vibration Neutralisers
550(1)
9.6 Vibration Measurement
550(7)
9.6.1 Acceleration Transducers
550(4)
9.6.1.1 Sources of Measurement Error
552(1)
9.6.1.2 Sources of Error in the Measurement of Transients
553(1)
9.6.1.3 Accelerometer Calibration
553(1)
9.6.1.4 Accelerometer Mounting
553(1)
9.6.1.5 Piezoresistive Accelerometers
554(1)
9.6.2 Velocity Transducers
554(1)
9.6.3 Laser Vibrometers
555(1)
9.6.4 Instrumentation Systems
556(1)
9.6.5 Units of Vibration
556(1)
9.7 Damping of Vibrating Surfaces
557(1)
9.7.1 Damping Methods
557(1)
9.7.2 When Damping is Effective and Ineffective
557(1)
9.8 Measurement of Damping
558(5)
10 Sound Power and Sound Pressure Level Estimation Procedures 563(70)
10.1 Introduction
563(1)
10.2 Fan Noise
564(4)
10.3 Air Compressors
568(4)
10.3.1 Small Compressors
568(1)
10.3.2 Large Compressors (Noise Levels within the Inlet and Exit Piping)
568(3)
10.3.2.1 Centrifugal Compressors
569(1)
10.3.2.2 Rotary or Axial Compressors
569(1)
10.3.2.3 Reciprocating Compressors
570(1)
10.3.3 Large Compressors (Exterior Noise Levels)
571(4)
10.3.3.1 Rotary and Reciprocating Compressors
571(1)
10.3.3.2 Centrifugal Compressors (Casing Noise)
571(1)
10.3.3.3 Centrifugal Compressors (Unmuffled Air Inlet Noise)
571(1)
10.4 Compressors for Chillers and Refrigeration Units
572(1)
10.5 Cooling Towers
572(3)
10.6 Pumps
575(1)
10.7 Jets
575(4)
10.7.1 General Estimation Procedures
575(4)
10.7.2 Gas and Steam Vents
579(1)
10.7.3 General Jet Noise Control
579(1)
10.8 Control Valves
579(12)
10.8.1 Internal Sound Power Generation
580(5)
10.8.2 Internal Sound Pressure Level
585(1)
10.8.3 External Sound Pressure Level
586(3)
10.8.4 High Exit Velocities
589(1)
10.8.5 Control Valve Noise Reduction
589(1)
10.8.6 Control Valves for Liquids
590(1)
10.8.7 Control Valves for Steam
591(1)
10.9 Pipe Flow
591(1)
10.10 Boilers
592(1)
10.11 Gas and Steam Turbines
593(1)
10.12 Reciprocating Piston Engines (Diesel or Gas)
593(2)
10.12.1 Exhaust Noise
594(1)
10.12.2 Casing Noise
594(1)
10.12.3 Inlet Noise
594(1)
10.13 Furnace Noise
595(2)
10.14 Electric Motors
597(2)
10.14.1 Small Electric Motors (below 300 kW)
597(1)
10.14.2 Large Electric Motors (above 300 kW)
598(1)
10.15 Generators
599(1)
10.16 Transformers
599(1)
10.17 Gears
600(1)
10.18 Large Wind Turbines (Rated Power Greater than or Equal to 2 MW)
601(1)
10.19 Transportation Noise
602(31)
10.19.1 Road Traffic Noise
602(11)
10.19.1.1 CNOSSOS Model (European Commission)
602(4)
10.19.1.2 UK DoT model (CoRTN)
606(5)
10.19.1.3 United States FHWA Traffic Noise Model (TNM)
611(2)
10.19.1.4 Other Models
613(1)
10.19.1.5 Accuracy of Traffic Noise Models
613(1)
10.19.2 Rail Traffic Noise
613(18)
10.19.2.1 Nordic Prediction Model (1996)
614(4)
10.19.2.2 European Commission Model
618(8)
10.19.2.3 UK Department of Transport Model
626(5)
10.19.3 Aircraft Noise
631(2)
11 Practical Numerical Acoustics 633(36)
11.1 Introduction
633(1)
11.2 Low-Frequency Region
634(26)
11.2.1 Helmholtz Method
635(1)
11.2.2 Boundary element method (BEM)
636(10)
11.2.2.1 Direct Method
637(1)
11.2.2.2 Indirect Method
638(1)
11.2.2.3 Meshing
638(1)
11.2.2.4 Problem Formulation
639(7)
11.2.3 Rayleigh Integral Method
646(1)
11.2.4 Finite Element Analysis (FEA)
647(6)
11.2.4.1 Pressure Formulated Acoustic Elements
649(2)
11.2.4.2 Practical Aspects of Modelling Acoustic Systems with FEA
651(2)
11.2.5 Numerical Modal Analysis
653(1)
11.2.6 Modal Coupling Using MATLAB
653(7)
11.2.6.1 Acoustic Potential Energy
660(1)
11.3 High-Frequency Region: Statistical Energy Analysis
660(9)
11.3.1 Coupling Loss Factors
663(2)
11.3.2 Amplitude Responses
665(4)
12 Frequency Analysis 669(34)
12.1 Introduction
669(1)
12.2 Digital Filtering
669(3)
12.2.1 Octave and 1/3-Octave Filter Rise Times and Settling Times
671(1)
12.3 Advanced Frequency Analysis
672(31)
12.3.1 Auto Power Spectrum and Power Spectral Density
675(4)
12.3.2 Linear Spectrum
679(1)
12.3.3 Leakage
679(1)
12.3.4 Windowing
680(7)
12.3.4.1 Amplitude Scaling to Compensate for Window Effects
682(1)
12.3.4.2 Window Function Coefficients
683(3)
12.3.4.3 Power Correction and RMS Calculation
686(1)
12.3.5 Sampling Frequency and Aliasing
687(1)
12.3.6 Overlap Processing
687(1)
12.3.7 Zero Padding
688(1)
12.3.8 Uncertainty Principle
689(1)
12.3.9 Time Synchronous Averaging and Synchronous Sampling
689(1)
12.3.10 Hilbert Transform
689(2)
12.3.11 Cross-Spectrum
691(1)
12.3.12 Coherence
692(3)
12.3.13 Coherent Output Power
695(1)
12.3.14 Frequency Response (or Transfer) Function
696(1)
12.3.15 Convolution
696(2)
12.3.16 Auto-Correlation and Cross-Correlation Functions
698(2)
12.3.17 Maximum Length Sequence (MLS)
700(3)
A Review of Relevant Linear Matrix Algebra 703(8)
A.1 Addition, Subtraction and Multiplication by a Scalar
703(1)
A.2 Multiplication of Matrices
704(1)
A.3 Matrix Transposition
705(1)
A.4 Matrix Determinants
705(1)
A.5 Rank of a Matrix
706(1)
A.6 Positive and Nonnegative Definite Matrices
706(1)
A.7 Eigenvalues and Eigenvectors
706(1)
A.8 Orthogonality
707(1)
A.9 Matrix Inverses
707(1)
A.10 Singular Value Decomposition
708(3)
B Wave Equation Derivation 711(6)
B.1 Conservation of Mass
711(1)
B.2 Euler's Equation
712(1)
B.3 Equation of State
713(1)
B.4 Wave Equation (Linearised)
714(3)
C Properties of Materials and Gases 717(6)
D Acoustical Properties of Porous Materials 723(24)
D.1 Flow Resistance and Flow Resistivity
723(3)
D.2 Parameters for Characterising Sound Propagation in Porous Media
726(1)
D.3 Sound Reduction Due to Propagation through a Porous Material
727(2)
D.4 Measurement of Absorption Coefficients of Porous Materials
729(14)
D.4.1 Measurement Using the Moving Microphone Method
729(7)
D.4.2 Measurement Using the 2-Microphone Method
736(2)
D.4.3 Measurement Using the 4-Microphone Method
738(5)
D.5 Calculation of Absorption Coefficients of Porous Materials
743(4)
D.5.1 Porous Materials with a Backing Cavity
743(1)
D.5.2 Multiple Layers of Porous Liner Backed by an Impedance
744(1)
D.5.3 Porous Liner Covered with a Limp Impervious Layer
744(1)
D.5.4 Porous Liner Covered with a Perforated Sheet
745(1)
D.5.5 Porous Liner with a Limp Impervious Layer and a Perforated Sheet
745(2)
E Calculation of Diffraction and Ground Effects for the Harmonoise Model 747(18)
E.1 Introduction
747(2)
E.2 Diffraction Effect
749(2)
E.3 Ground Effect
751(8)
E.3.1 Concave Model
754(3)
E.3.2 Transition Model
757(2)
E.4 Fresnel Zone for Reflection from a Ground Segment
759(6)
F Files Available for Use with This Book 765(2)
F.1 Table of Files for Use with This Book
765(2)
References 767(36)
Index 803
Colin H. Hansen is an Emeritus Professor at the University of Adelaide, Australia. He is past President and Honorary Fellow of the International Institute of Acoustics and Vibration and recipient of the 2009 Rayleigh medal by the UK Institute of Acoustics, as well as the 2013 AGM Michell Medal by Engineers Australia. He is also author of Active Control of Noise and Vibration 2nd Edition (2012), Noise Control from Concept to Application (2005), Understanding active noise cancellation (2001), also published by Taylor & Francis.

Carl Howard is an associate professor at the University of Adelaide undertaking teaching, research, and consulting in acoustics. He has been a consultant with Vipac Engineers and Scientists, Worley and Colin Gordon and Associates, and also worked at United Technologies Research Center.