Muutke küpsiste eelistusi

E-raamat: Exploring the Riemann Zeta Function: 190 years from Riemann's Birth

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Sep-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319599694
  • Formaat - PDF+DRM
  • Hind: 172,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Sep-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319599694

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Exploring the Riemann Zeta Function: 190 years from Riemann"s Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.

Preface (Dyson).- 1. An introduction to Riemann"s life, his mathematics, and his work on the zeta function (R. Baker).- 2. Ramanujan"s formula for zeta (2n+1) (B.C. Berndt, A. Straub).- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus).- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 5. Arthur"s truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield).- 6. On a Cubic moment of Hardy"s function with a shift (A. Ivic).- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Y ld r m).- 8. Bagchi"s Theorem for families of automorphic forms (E. Kowalski).- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian).- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider)

.- 11. Reading Riemann (S.J. Patterson).- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlichll).

Arvustused

The best thing in this book that it contains a wide range of information which opens a lot of doors for researchers. It is good to have these formidable results in one book. ...  Riemanns zeta function is difficult to understand deeply, but this book is a very good help to reach that goal. (Salim Salem, MAA Reviews, February, 2018)

Preface: Quasi-Crystals and the Riemann Hypothesis v
Freeman J. Dyson
An Introduction to Riemann's Life, His Mathematics, and His Work on the Zeta Function
1(12)
Roger Baker
Ramanujan's Formula for ζ(2n + 1)
13(22)
Bruce C. Berndt
Armin Straub
Towards a Fractal Cohomology: Spectra of Polya--Hilbert Operators, Regularized Determinants and Riemann Zeros
35(32)
Tim Cobler
Michel L. Lapidus
The Temptation of the Exceptional Characters
67(16)
John B. Friedlander
Henryk Iwaniec
Arthur's Truncated Eisenstein Series for SL(2, Z) and the Riemann Zeta Function: A Survey
83(16)
Dorian Goldfeld
On a Cubic Moment of Hardy's Function with a Shift
99(14)
Aleksandar Ivic
Some Analogues of Pair Correlation of Zeta Zeros
113(68)
Yunus Karabulut
Cem Yalcin Yildirim
Bagchi's Theorem for Families of Automorphic Forms
181(20)
E. Kowalski
The Liouville Function and the Riemann Hypothesis
201(22)
Michael J. Mossinghoff
Timothy S. Trudgian
Explorations in the Theory of Partition Zeta Functions
223(42)
Ken Ono
Larry Rolen
Robert Schneider
Reading Riemann
265(22)
S.J. Patterson
A Taniyama Product for the Riemann Zeta Function
287
David E. Rohrlich
Michael Th. Rassias is a Postdoctoral researcher at the Institute of Mathematics of the University of Zürich and a visiting researcher at the Program in Interdisciplinary Studies of the Institute for Advanced Study, Princeton.