|
|
xiii | |
About the editors |
|
xxi | |
Foreword |
|
xxiii | |
|
1 Fault diagnosis and fault-tolerant control of unmanned aerial vehicles |
|
|
1 | (24) |
|
|
|
|
1 | (4) |
|
1.1.1 Unmanned aerial vehicle |
|
|
1 | (1) |
|
1.1.2 Fault detection and diagnosis |
|
|
2 | (1) |
|
1.1.3 Fault-tolerant control |
|
|
3 | (2) |
|
1.2 Modeling of an unmanned quadrotor helicopter |
|
|
5 | (4) |
|
1.2.1 Kinematic equations |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.2.4 Actuator fault formulation |
|
|
9 | (1) |
|
1.3 Active fault-tolerant control |
|
|
9 | (8) |
|
|
10 | (1) |
|
1.3.2 Adaptive sliding mode control |
|
|
11 | (1) |
|
1.3.3 Construction of reconfigurable mechanism |
|
|
12 | (5) |
|
|
17 | (4) |
|
1.4.1 Fault estimation and accommodation results |
|
|
18 | (3) |
|
|
21 | (1) |
|
|
21 | (4) |
|
2 Control techniques to deal with the damage of a quadrotor propeller |
|
|
25 | (18) |
|
|
|
|
|
|
25 | (1) |
|
|
26 | (2) |
|
|
28 | (3) |
|
|
28 | (2) |
|
|
30 | (1) |
|
|
31 | (5) |
|
|
32 | (2) |
|
2.4.2 Backstepping control scheme |
|
|
34 | (2) |
|
2.5 Numerical simulations |
|
|
36 | (2) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (4) |
|
3 Observer-based LPV control design of quad-TRUAV under rotor-tilt axle stuck fault |
|
|
43 | (24) |
|
|
|
|
|
|
|
44 | (2) |
|
3.2 Quad-TRUAV and nonlinear modeling |
|
|
46 | (2) |
|
|
48 | (4) |
|
3.3.1 Polytopic LPV representation |
|
|
48 | (2) |
|
3.3.2 Closed-loop analysis with observer-based LPV control |
|
|
50 | (2) |
|
3.4 Observer-based LPV control for the quad-TRUAV |
|
|
52 | (5) |
|
3.4.1 Observer-based LPV controller synthesis |
|
|
52 | (3) |
|
3.4.2 Inverse procedure design |
|
|
55 | (2) |
|
3.5 Fault-tolerant design |
|
|
57 | (2) |
|
3.5.1 Actuator stuck fault |
|
|
57 | (1) |
|
3.5.2 Degraded model method for FTC |
|
|
57 | (2) |
|
|
59 | (5) |
|
|
59 | (2) |
|
3.6.2 FTC results under fault |
|
|
61 | (3) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (3) |
|
4 An unknown input observer-based framework for fault and icing detection and accommodation in overactuated unmanned aerial vehicles |
|
|
67 | (26) |
|
|
|
|
|
67 | (1) |
|
|
68 | (5) |
|
|
70 | (1) |
|
|
71 | (1) |
|
4.2.3 Control allocation setup |
|
|
71 | (1) |
|
|
72 | (1) |
|
4.3 Icing and fault model |
|
|
73 | (1) |
|
4.4 Unknown input observer framework |
|
|
74 | (2) |
|
4.5 Diagnosis and accommodation |
|
|
76 | (6) |
|
4.5.1 Detection and isolation in UAVs using UIOs |
|
|
76 | (5) |
|
4.5.2 Control allocation-based icing/fault accommodation |
|
|
81 | (1) |
|
4.6 Enhanced quasi-LPV framework |
|
|
82 | (4) |
|
4.6.1 Nonlinear embedding |
|
|
83 | (1) |
|
4.6.2 LPV unknown input observer |
|
|
83 | (1) |
|
4.6.3 Application to the UAV fault/icing diagnosis |
|
|
84 | (2) |
|
4.7 Illustrative example: the Aerosonde UAV |
|
|
86 | (4) |
|
|
90 | (3) |
|
5 Actuator fault tolerance for a WAM-V catamaran with azimuth thrusters |
|
|
93 | (24) |
|
|
|
|
|
|
|
|
93 | (2) |
|
|
95 | (2) |
|
|
95 | (1) |
|
5.2.2 Actuator faults and failures |
|
|
96 | (1) |
|
5.3 Control system architecture in the failure-free scenario |
|
|
97 | (7) |
|
|
97 | (2) |
|
|
99 | (2) |
|
|
101 | (3) |
|
5.4 Control reconfiguration in the presence of failures |
|
|
104 | (2) |
|
5.4.1 Failure on S azimuth thruster |
|
|
105 | (1) |
|
5.4.2 Blocked angle on S azimuth thruster |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
106 | (7) |
|
5.5.1 Scenario I -- fault-free actuators |
|
|
108 | (1) |
|
5.5.2 Scenario II -- double thruster faults |
|
|
108 | (1) |
|
5.5.3 Scenario III -- fault and failure on thrusters |
|
|
109 | (1) |
|
5.5.4 Scenario IV -- stuck and faulty thruster |
|
|
110 | (1) |
|
5.5.5 Discussion of results |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
113 | (4) |
|
6 Fault-tolerant control of a service robot |
|
|
117 | (26) |
|
|
|
|
|
117 | (3) |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (6) |
|
|
120 | (3) |
|
6.2.2 Takagi--Sugeno formulation |
|
|
123 | (3) |
|
|
126 | (3) |
|
6.3.1 Parallel distributed control |
|
|
126 | (1) |
|
6.3.2 Optimal control design |
|
|
127 | (2) |
|
6.4 Fault and state estimation |
|
|
129 | (3) |
|
6.4.1 Robust unknown input observer |
|
|
129 | (1) |
|
6.4.2 Fault concept and design implications |
|
|
130 | (1) |
|
6.4.3 Fault estimation and compensation |
|
|
131 | (1) |
|
6.5 Fault-tolerant scheme |
|
|
132 | (2) |
|
|
134 | (5) |
|
6.6.1 Basic control structure with the Luenberger observer |
|
|
135 | (1) |
|
6.6.2 Basic control structure with RUIO |
|
|
136 | (1) |
|
6.6.3 Complete fault-tolerant control scheme |
|
|
137 | (2) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (3) |
|
7 Distributed fault detection and isolation strategy for a team of cooperative mobile manipulators |
|
|
143 | (24) |
|
|
|
|
|
|
|
143 | (3) |
|
7.2 Mathematical background and problem setting |
|
|
146 | (2) |
|
|
146 | (1) |
|
|
147 | (1) |
|
7.2.3 Problem description |
|
|
148 | (1) |
|
7.3 Observer and controller scheme |
|
|
148 | (6) |
|
7.3.1 Collective state estimation |
|
|
150 | (1) |
|
7.3.2 Observer convergence |
|
|
151 | (3) |
|
7.4 Fault diagnosis and isolation scheme |
|
|
154 | (4) |
|
7.4.1 Residuals in the absence of faults |
|
|
155 | (1) |
|
7.4.2 Residuals in the presence of faults |
|
|
156 | (1) |
|
7.4.3 Detection and isolation strategy |
|
|
157 | (1) |
|
|
158 | (4) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (3) |
|
8 Nonlinear optimal control for aerial robotic manipulators |
|
|
167 | (30) |
|
|
|
|
|
167 | (2) |
|
8.2 Dynamic model of the aerial robotic manipulator |
|
|
169 | (6) |
|
8.3 Approximate linearization of the model of the aerial robotic manipulator |
|
|
175 | (4) |
|
8.4 Differential flatness properties of the aerial robotic manipulator |
|
|
179 | (1) |
|
8.5 The nonlinear H-infinity control |
|
|
180 | (2) |
|
8.5.1 Tracking error dynamics |
|
|
180 | (1) |
|
8.5.2 Min--max control and disturbance rejection |
|
|
181 | (1) |
|
8.6 Lyapunov stability analysis |
|
|
182 | (3) |
|
8.7 Robust state estimation with the use of the H-infinity Kalman filter |
|
|
185 | (1) |
|
|
185 | (7) |
|
|
192 | (1) |
|
|
193 | (4) |
|
9 Fault diagnosis and fault-tolerant control techniques for aircraft systems |
|
|
197 | (16) |
|
|
|
|
|
197 | (2) |
|
9.2 Aircraft model simulator |
|
|
199 | (3) |
|
9.3 Active fault-tolerant control system design |
|
|
202 | (5) |
|
9.3.1 Fault diagnosis module |
|
|
203 | (4) |
|
9.3.2 Fault accommodation strategy |
|
|
207 | (1) |
|
|
207 | (4) |
|
9.4.1 Fault diagnosis filter design |
|
|
208 | (1) |
|
9.4.2 NLGA-AF simulation results |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (2) |
|
10 Fault-tolerant trajectory tracking control of in-wheel motor vehicles with energy-efficient steering and torque distribution |
|
|
213 | (22) |
|
|
|
|
10.1 Trajectory-tracking controller design |
|
|
214 | (4) |
|
|
214 | (2) |
|
10.1.2 Reconfigurable LPV controller design |
|
|
216 | (2) |
|
10.2 Fault-tolerant and energy optimal control synthesis |
|
|
218 | (7) |
|
10.2.1 Control architecture |
|
|
218 | (1) |
|
10.2.2 Fault-tolerant reconfiguration |
|
|
219 | (1) |
|
10.2.3 Energy optimal reconfiguration |
|
|
220 | (3) |
|
10.2.4 Efficient wheel torque distribution |
|
|
223 | (2) |
|
10.3 Electric motor and battery model |
|
|
225 | (2) |
|
10.3.1 Lithium-ion battery |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (5) |
|
|
232 | (1) |
|
|
232 | (3) |
|
11 Nullspace-based input reconfiguration architecture for over-actuated aerial vehicles |
|
|
235 | (22) |
|
|
|
|
|
|
11.1 Inversion-based nullspace computation for parameter-varying systems |
|
|
236 | (5) |
|
11.1.1 Nullspace of a linear map |
|
|
236 | (1) |
|
11.1.2 Memoryless matrices |
|
|
237 | (2) |
|
|
239 | (2) |
|
11.2 Geometry-based nullspace construction |
|
|
241 | (4) |
|
11.2.1 Parameter-varying invariant subspaces |
|
|
242 | (1) |
|
11.2.2 Nullspace construction for LPV systems |
|
|
243 | (2) |
|
11.3 Control input reconfiguration architecture for compensating actuator failures |
|
|
245 | (2) |
|
11.4 Reconfigurable fault-tolerant control of the B-1 aircraft |
|
|
247 | (6) |
|
11.4.1 The non-linear flight simulator |
|
|
247 | (2) |
|
11.4.2 Construction of the LPV model |
|
|
249 | (1) |
|
11.4.3 Actuator inversion and nullspace computation |
|
|
249 | (1) |
|
11.4.4 Fault signal tracking |
|
|
250 | (1) |
|
11.4.5 Simulation results |
|
|
251 | (2) |
|
11.4.6 Robustness analysis |
|
|
253 | (1) |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
254 | (3) |
|
12 Data-driven approaches to fault-tolerant control of industrial robotic systems |
|
|
257 | (28) |
|
|
|
|
257 | (1) |
|
12.2 Introduction and motivation |
|
|
258 | (2) |
|
12.3 Data-driven control framework based on Youla parameterization |
|
|
260 | (5) |
|
12.3.1 System description and preliminaries |
|
|
260 | (2) |
|
12.3.2 Youla parameterization of all stabilizing controllers |
|
|
262 | (2) |
|
12.3.3 Plug-and-play control framework |
|
|
264 | (1) |
|
12.4 Reinforcement learning-aided approach to fault-tolerant controller design |
|
|
265 | (6) |
|
12.4.1 Applying RL to control system design |
|
|
266 | (1) |
|
12.4.2 Reward function design |
|
|
266 | (3) |
|
12.4.3 RL-based solution to Youla parameterization matrix |
|
|
269 | (2) |
|
|
271 | (5) |
|
|
271 | (1) |
|
12.5.2 Results and discussion |
|
|
272 | (4) |
|
12.6 Open questions about the framework and future work |
|
|
276 | (1) |
|
|
277 | (2) |
|
|
279 | (6) |
|
|
285 | (4) |
|
|
|
Index |
|
289 | |