Preface |
|
xi | |
Acknowledgments |
|
xiii | |
|
|
1 | (18) |
|
1.1 Terminology and Notation |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.5 Cauchy-Kowalevski Theorem |
|
|
5 | (2) |
|
1.6 Initial Boundary Value Problems |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.8 Separation of Variables |
|
|
9 | (10) |
|
|
15 | (4) |
|
|
19 | (50) |
|
|
19 | (4) |
|
|
21 | (1) |
|
2.1.2 Basis and Dimension |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.2 The Integral as an Inner Product |
|
|
23 | (3) |
|
2.2.1 Piecewise Continuous Functions |
|
|
24 | (1) |
|
2.2.2 Inner Product on Cp (a, b) |
|
|
25 | (1) |
|
2.3 Principle of Superposition |
|
|
26 | (4) |
|
|
26 | (2) |
|
|
28 | (2) |
|
|
30 | (1) |
|
2.4 General Fourier Series |
|
|
30 | (1) |
|
2.5 Fourier Sine Series on (0, c) |
|
|
31 | (4) |
|
2.5.1 Odd, Periodic Extensions |
|
|
33 | (2) |
|
2.6 Fourier Cosine Series on (0, c) |
|
|
35 | (2) |
|
2.6.1 Even, Periodic Extensions |
|
|
36 | (1) |
|
2.7 Fourier Series on (-c, c) |
|
|
37 | (3) |
|
2.7.1 2c-Periodic Extensions |
|
|
40 | (1) |
|
|
40 | (5) |
|
|
45 | (1) |
|
2.10 Piecewise Smooth Functions |
|
|
46 | (4) |
|
2.11 Fourier Series Convergence |
|
|
50 | (8) |
|
|
50 | (1) |
|
2.11.2 Riemann-Lebesgue Lemma |
|
|
51 | (1) |
|
2.11.3 A Dirichlet Kernel Lemma |
|
|
52 | (2) |
|
|
54 | (4) |
|
2.12 2c-Periodic Functions |
|
|
58 | (3) |
|
|
61 | (8) |
|
|
62 | (7) |
|
3 Sturm-Liouville Problems |
|
|
69 | (28) |
|
|
69 | (1) |
|
3.2 Regular Sturm-Liouville Problems |
|
|
70 | (1) |
|
|
71 | (8) |
|
3.3.1 Eigenfunction Orthogonality |
|
|
72 | (2) |
|
|
74 | (1) |
|
3.3.3 Eigenfunction Uniqueness |
|
|
75 | (2) |
|
3.3.4 Non-negative Eigenvalues |
|
|
77 | (2) |
|
|
79 | (6) |
|
3.4.1 Neumann Boundary Conditions on [ 0, c] |
|
|
79 | (1) |
|
3.4.2 Robin and Neumann BCs |
|
|
80 | (3) |
|
3.4.3 Periodic Boundary Conditions |
|
|
83 | (2) |
|
|
85 | (5) |
|
|
90 | (7) |
|
|
93 | (4) |
|
|
97 | (16) |
|
|
97 | (3) |
|
|
100 | (1) |
|
|
101 | (2) |
|
|
103 | (2) |
|
4.5 Polar-Cylindrical Coordinates |
|
|
105 | (3) |
|
4.6 Spherical Coordinates |
|
|
108 | (5) |
|
|
108 | (5) |
|
|
113 | (26) |
|
|
113 | (3) |
|
5.1.1 Example: Insulated Ends |
|
|
114 | (2) |
|
|
116 | (4) |
|
5.2.1 Variation of Parameters |
|
|
117 | (2) |
|
5.2.2 Example: Semihomogeneous IBVP |
|
|
119 | (1) |
|
5.3 Nonhomogeneous Boundary Conditions |
|
|
120 | (11) |
|
5.3.1 Example: Nonhomogeneous Boundary Condition |
|
|
122 | (3) |
|
5.3.2 Example: Time-Dependent Boundary Condition |
|
|
125 | (2) |
|
|
127 | (1) |
|
|
128 | (3) |
|
5.4 Spherical Coordinate Example |
|
|
131 | (8) |
|
|
133 | (6) |
|
6 Heat Transfer in 2D and 3D |
|
|
139 | (42) |
|
|
139 | (4) |
|
6.1.1 Example: Homogeneous IBVP |
|
|
142 | (1) |
|
6.2 Semihomogeneous 2D IBVP |
|
|
143 | (4) |
|
6.2.1 Example: Internal Source or Sink |
|
|
146 | (1) |
|
6.3 Nonhomogeneous 2D IBVP |
|
|
147 | (3) |
|
6.4 2D BVP: Laplace and Poisson Equations |
|
|
150 | (19) |
|
|
150 | (4) |
|
|
154 | (2) |
|
|
156 | (3) |
|
|
159 | (4) |
|
6.4.5 Dirichlet, Neumann BC Example |
|
|
163 | (3) |
|
|
166 | (3) |
|
6.5 Nonhomogeneous 2D Example |
|
|
169 | (1) |
|
|
170 | (3) |
|
|
173 | (8) |
|
|
176 | (5) |
|
|
181 | (26) |
|
|
181 | (18) |
|
7.1.1 d'Alembert's Solution |
|
|
184 | (3) |
|
7.1.2 Homogeneous IBVP: Series Solution |
|
|
187 | (3) |
|
7.1.3 Semihomogeneous IBVP |
|
|
190 | (3) |
|
7.1.4 Nonhomogeneous IBVP |
|
|
193 | (2) |
|
7.1.5 Homogeneous IBVP in Polar Coordinates |
|
|
195 | (4) |
|
|
199 | (8) |
|
7.2.1 2D Homogeneous Solution |
|
|
199 | (3) |
|
|
202 | (5) |
|
8 Numerical Methods: an Overview |
|
|
207 | (12) |
|
|
208 | (6) |
|
|
210 | (2) |
|
|
212 | (2) |
|
|
214 | (4) |
|
8.2.1 Finite Difference Method |
|
|
214 | (2) |
|
8.2.2 Finite Element Method |
|
|
216 | (1) |
|
8.2.3 Finite Analytic Method |
|
|
217 | (1) |
|
8.3 Consistency and Convergence |
|
|
218 | (1) |
|
9 The Finite Difference Method |
|
|
219 | (30) |
|
|
219 | (3) |
|
9.2 Finite Difference Formulas |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
223 | (3) |
|
9.3.1 Explicit Formulation |
|
|
223 | (1) |
|
9.3.2 Implicit Formulation |
|
|
224 | (2) |
|
9.4 Crank-Nicolson Method |
|
|
226 | (1) |
|
|
226 | (5) |
|
|
226 | (1) |
|
|
227 | (4) |
|
9.6 Convergence in Practice |
|
|
231 | (1) |
|
|
231 | (3) |
|
9.7.1 Implicit Formulation |
|
|
231 | (2) |
|
|
233 | (1) |
|
9.8 2D Heat Equation in Cartesian Coordinates |
|
|
234 | (5) |
|
9.9 Two-Dimensional Wave Equation |
|
|
239 | (1) |
|
9.10 2D Heat Equation in Polar Coordinates |
|
|
239 | (10) |
|
|
244 | (5) |
|
|
249 | (22) |
|
|
250 | (2) |
|
10.2 1D Elliptical Example |
|
|
252 | (5) |
|
|
252 | (1) |
|
10.2.2 Equivalence in Forms |
|
|
253 | (2) |
|
10.2.3 Finite Element Solution |
|
|
255 | (2) |
|
10.3 2D Elliptical Example |
|
|
257 | (4) |
|
|
257 | (1) |
|
10.3.2 Finite Element Approximation |
|
|
258 | (3) |
|
|
261 | (3) |
|
10.5 1D Parabolic Example |
|
|
264 | (7) |
|
|
264 | (1) |
|
|
265 | (1) |
|
10.5.3 Backward Euler's Method |
|
|
266 | (2) |
|
|
268 | (3) |
|
11 Finite Analytic Method |
|
|
271 | (24) |
|
11.1 1D Transport Equation |
|
|
272 | (8) |
|
11.1.1 Finite Analytic Solution |
|
|
273 | (2) |
|
11.1.2 FA and FD Coefficient Comparison |
|
|
275 | (4) |
|
11.1.3 Hybrid Finite Analytic Solution |
|
|
279 | (1) |
|
11.2 2D Transport Equation |
|
|
280 | (10) |
|
11.2.1 FA Solution on Uniform Grids |
|
|
282 | (5) |
|
11.2.2 The Poisson Equation |
|
|
287 | (3) |
|
11.3 Convergence and Accuracy |
|
|
290 | (5) |
|
|
291 | (4) |
|
|
295 | (8) |
|
|
303 | (8) |
|
|
308 | (1) |
|
|
309 | (2) |
References |
|
311 | (4) |
Index |
|
315 | |