Muutke küpsiste eelistusi

E-raamat: Frontiers in Fusion Research II: Introduction to Modern Tokamak Physics

  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319189055
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319189055

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book reviews recent progress in our understanding of tokamak physics related to steady state operation, and addresses the scientific feasibility of a steady state tokamak fusion power system. It covers the physical principles behind continuous tokamak operation and details the challenges remaining and new lines of research towards the realization of such a system. Following a short introduction to tokamak physics and the fundamentals of steady state operation, later chapters cover parallel and perpendicular transport in tokamaks, MHD instabilities in advanced tokamak regimes, control issues, and SOL and divertor plasmas. A final chapter reviews key enabling technologies for steady state reactors, including negative ion source and NBI systems, Gyrotron and ECRF systems, superconductor and magnet systems, and structural materials for reactors.The tokamak has demonstrated an excellent plasma confinement capability with its symmetry, but has an intrinsic drawback with its pulse

d operation with inductive operation. Efforts have been made over the last 20 years to realize steady state operation, most promisingly utilizing bootstrap current.Frontiers in Fusion Research II: Introduction to Modern Tokamak Physics will be of interest to graduate students and researchers involved in all aspects of tokamak science and technology.

Introduction to Tokamak Physics.- Steady State Tokamak Reactor.- Steady State Operation of Tokamaks.- Steady State Tokamak Reactor.- Major Features of SSTR.- Reactor Power Balance.- Tokamak Equilibrium.- Topology of Magnetic Confinement.- Symplectic form of the Magnetic Field.- Flux Coordinates.- Equilibrium in Tokamak.- Advanced Tokamak Regimes.- Advanced Tokamak Research.- Weak Shear Regime.- Negative Shear Regime.- Current Hole Regime.- Parallel Transport in Tokamaks.- Moment Equations.- Ohm"s Law in Tokamak.- Plasma Rotation in Tokamak.- Perpendicular Transport in Tokamaks.- Plasma Confinement.- Neoclassical transport.- Turbulent transport.- MHD Instabilities in AT Regimes.- Ideal MHD modes.- Resistive MHD instabilities.- Alfven Eigen Modes.- Control Issues of AT Operation.- Control of ITB strength.- Edge bootstrap current.- Plasma disruption.- SOL and Divertor.- Edge and SOL perpendicular transport.- SOL parallel transport.- Divertor plasma.- Plasma wall interaction.- Key Tec

hnology Development for steady state tokamak reactor.- Negative ion source and NBI system.- Gyrotron and ECRF system.- Superconductor and Magnet system.- Structural materials for Fusion.- Blanket and maintenance.- Summary.- Appendix A: Mathematical Basics.- Appendix B: Elementary Physics.- Appendix C: Basic Plasma Physics.

Mitsuru Kikuchi took his PhD at University of Tokyo in 1981 and has been working at JAEA on magnetic confinement fusion, especially on tokamak systems. He worked for 23 years in Japanese large tokamak JT-60m was director of JT-60 for the last two years and explored steady state operation of tokamaks. He has also worked in reactor design and strategic planning of fusion development. He is currently chairman of the board of editors of the Nuclear Fusion Journal, visiting professor at Kyushu University and guest professor at Osaka University.
1 Tokamak Fusion Reactor
1(16)
1.1 D-T Fusion Reaction
2(1)
1.2 Tokamak Operation
3(2)
1.3 Steady State Tokamak Reactors
5(3)
1.4 Major Features of SSTR
8(2)
1.5 Reactor Power Balance
10(7)
2 Plasma Equilibrium in Tokamak
17(28)
2.1 Topology of Magnetic Confinement
17(2)
2.2 Magnetic Field Structure of Tokamak
19(4)
2.2.1 Hamilton Structure of the Magnetic Field B
19(1)
2.2.2 Magnetic Field in Flux Coordinates
20(3)
2.3 Tokamak Equilibrium
23(8)
2.3.1 Grad-Shafranov Equilibrium
23(2)
2.3.2 Current Hole Equilibrium
25(1)
2.3.3 Anisotropic Pressure Equilibrium
26(2)
2.3.4 Equilibrium with Flow
28(1)
2.3.5 General Tensor Equilibrium
29(2)
2.4 1.5D Transport Equations in Tokamak
31(14)
2.4.1 Integral Relations
32(1)
2.4.2 Energy and Particle Conservation Equations
33(2)
2.4.3 Magnetic Diffusion Equation
35(4)
2.4.4 Equilibrium Equation
39(1)
2.4.5 Summary of 1.5D Transport Equations
40(1)
2.4.6 Flux Conserving Tokamak Equilibrium
41(4)
3 Advanced Tokamak Regime
45(18)
3.1 Introduction
46(1)
3.2 Current Profile and Density Limit
47(1)
3.3 Weak Shear Operation
48(2)
3.4 Negative Shear Operation
50(3)
3.5 Current Hole Operation
53(2)
3.6 Long Pulse Operation
55(3)
3.7 New Tokamaks for Advanced Tokamak Research
58(2)
3.8 Appendix: Tokamak/Helical Representative Data
60(3)
4 Collisional Transport in Tokamak
63(52)
4.1 Moment Equations in Tokamak
64(10)
4.1.1 Moment Equations
64(7)
4.1.2 Flux-Surface Averaged Moment Equations
71(3)
4.2 Coulomb Collision
74(6)
4.2.1 Collision Operator
74(3)
4.2.2 Linearized Collision Operator
77(1)
4.2.3 Collisionality Regimes in Tokamaks
78(2)
4.3 Parallel Friction and Viscosity in Tokamak
80(12)
4.3.1 Drift Kinetic Equation
80(3)
4.3.2 Parallel Friction from Drift Kinetic Equation
83(3)
4.3.3 Parallel Viscosity from Drift Kinetic Equation
86(6)
4.4 Ohm's Law in Tokamak
92(13)
4.4.1 Generalized Ohm's Law
92(1)
4.4.2 Electrical Conductivity
93(2)
4.4.3 Bootstrap Current
95(3)
4.4.4 Neutral Beam Current Drive
98(4)
4.4.5 EC Current Drive
102(3)
4.5 Plasma Rotation in Tokamak
105(10)
4.5.1 Neoclassical Rotations
105(4)
4.5.2 Neoclassical Toroidal Viscosity
109(6)
5 Low Frequency Collective Motions in Tokamak
115(42)
5.1 Electrostatic Drift Waves
116(10)
5.1.1 Density Gradient Drift Waves
116(2)
5.1.2 Slab ITG Mode
118(1)
5.1.3 Toroidal ITG and ETG Modes
119(4)
5.1.4 Trapped Electron Mode/ITG
123(3)
5.2 Alfven Waves
126(5)
5.2.1 Shear Alfven Wave
126(1)
5.2.2 Kinetic Alfven Wave
127(2)
5.2.3 Drift Alfven Wave
129(2)
5.3 Gyro Kinetic Theory of Drift Waves
131(17)
5.3.1 Classical Gyrokinetic Theory
131(6)
5.3.2 Modern Gyro Kinetic Theory
137(11)
5.4 Linear Gyrokinetics of Drift Waves
148(9)
5.4.1 Global Structure of ITG/TEM
148(5)
5.4.2 Electron Temperature Gradient (ETG) Mode
153(4)
6 Fundamentals of Ballooning Modes in Tokamak
157(18)
6.1 Double Periodicity and Ballooning Mode
158(1)
6.2 ID Ballooning Transform
159(4)
6.2.1 Eikonal Formulation
159(2)
6.2.2 Translational Symmetry in Ballooning Mode
161(2)
6.3 2D Ballooning Transform
163(3)
6.4 WKBJ Solution of 2D Wave Equation
166(4)
6.4.1 Trapped Mode
166(1)
6.4.2 Passing Mode
167(3)
6.5 Local Dispersion Relation
170(5)
6.5.1 Trapped Mode
170(1)
6.5.2 Passing Mode
171(4)
7 Turbulent Transport in Tokamak
175(54)
7.1 Critical Temperature Gradient Transport
176(11)
7.1.1 Structure Formation in Non-equilibrium Open System
176(1)
7.1.2 Self-organized Criticality in Tokamak Transport
177(2)
7.1.3 Observations of Critical Gradients
179(3)
7.1.4 Particle Transport and ITG/TEM Transition
182(5)
7.2 Flow Shear Suppression of Turbulence
187(4)
7.2.1 Turbulence-Flow Paradigm
187(2)
7.2.2 Mean Flow and Avalanche Dynamics
189(2)
7.3 Turbulence and Zonal Flow
191(19)
7.3.1 Hasegawa-Mima Equation
191(7)
7.3.2 Zonal Flow by Modulational Instability
198(2)
7.3.3 Residual Zonal Flow
200(3)
7.3.4 Zonal Flow Dynamics
203(7)
7.4 Edge and Internal Transport Barriers
210(5)
7.4.1 Edge Transport Barrier
210(3)
7.4.2 Internal Transport Barrier
213(2)
7.5 Electromagnetic Turbulence
215(4)
7.5.1 ITG/TEM/KBM Turbulence
215(3)
7.5.2 Micro Tearing Mode Turbulence
218(1)
7.6 Turbulent Momentum Transport
219(3)
7.7 Plasma Confinement in Tokamak
222(7)
7.7.1 Similarity Law in Fluid Mechanics and Invariant Principle
222(2)
7.7.2 Invariant Principle of Plasma Confinement
224(5)
8 MHD Stability
229(72)
8.1 Spectral Property of MHD Operator
230(12)
8.1.1 MHD Spectrum of the Cylindrical Plasma
233(6)
8.1.2 Spectrum Gap in the Periodic Potential
239(3)
8.2 Newcomb Equation
242(4)
8.2.1 ID Newcomb Equation
243(1)
8.2.2 2D Newcomb Equation
243(3)
8.3 Frieman-Rotenberg Equation
246(4)
8.4 Ideal Localized Modes
250(12)
8.4.1 Edge Localized Modes
250(4)
8.4.2 Ballooning and Peeling Modes
254(5)
8.4.3 Infernal Mode and Barrier Localized Mode
259(3)
8.5 Resistive MHD Modes
262(12)
8.5.1 Classical Tearing Mode
262(3)
8.5.2 Neoclassical Tearing Mode
265(2)
8.5.3 Double Tearing Mode
267(7)
8.6 Kinetic MHD Equation
274(3)
8.7 Alfven Eigen Modes
277(18)
8.7.1 Global MHD Spectrum in Axisymmetric Tokamak
277(3)
8.7.2 High-n Alfven Eigenmodes
280(4)
8.7.3 Categories of AE Modes
284(5)
8.7.4 Energetic Particle Modes (EPM)
289(2)
8.7.5 Nonlinear AE Modes
291(4)
8.8 Resistive Wall Modes
295(6)
8.8.1 RWM in the Cylindrical Tokamak
295(1)
8.8.2 RWM in General Tokamak Equilibrium
296(1)
8.8.3 Ferromagnetic Wall Effect on RWM
297(1)
8.8.4 Stabilization of RWM in Tokamak
298(1)
8.8.5 Energetic-Particle-Driven Wall Mode
298(3)
9 Technology Developments for Fusion Power
301(40)
9.1 Superconducting Technology for Magnet System
302(8)
9.1.1 Superconductivity
302(3)
9.1.2 Superconducting Materials
305(2)
9.1.3 Superconducting Magnet
307(3)
9.2 Structural Materials for Fusion
310(7)
9.2.1 Material-Neutron Interaction
310(2)
9.2.2 Reduced Activation Ferrite/Martensitic Steel
312(3)
9.2.3 SiC/SiC Composite
315(2)
9.3 Blanket Materials
317(6)
9.3.1 Tritium Breeding Material
317(4)
9.3.2 Neutron Multiplier
321(2)
9.4 Neutronics
323(4)
9.4.1 Neutron-Material Interaction
323(1)
9.4.2 Fusion Neutronics
324(2)
9.4.3 Neutronics Applications
326(1)
9.5 Tritium and Deuterium Chemistry
327(6)
9.5.1 Physical Chemistry of Hydrogen
327(2)
9.5.2 Hydrogen Isotopes
329(1)
9.5.3 Hydrogen Isotope Exchange Reaction
330(3)
9.5.4 Fuel Circulation System in the Fusion Reactor
333(1)
9.6 Negative Ion Source and N-NBI System
333(3)
9.6.1 Negative-Ion-Based Neutral Beam Injection
333(1)
9.6.2 Negative Ion Source
334(2)
9.6.3 Negative Ion Accelerator
336(1)
9.7 Gyrotron and ECRF System
336(5)
A Mathematical Basics
341(14)
A.1 Vector Identities and Differential Operators
341(4)
A.2 Curvilinear Coordinates
345(1)
A.3 Vectors and Tensors on the Surface
346(2)
A.4 Differential Form
348(1)
A.5 Spectrum and Initial Value Problem of Linear Operator
349(1)
A.6 Important Ordinary Differential Equations
350(1)
A.7 Square Integrable Functions and L2 Space
351(1)
A.8 Poisson Summation Formula
352(1)
A.9 Algebraic Solutions
353(2)
B Elementary Physics
355(6)
B.1 Physical Constants
355(1)
B.2 Electro Dynamics
355(3)
B.2.1 Maxwell Equation
355(1)
B.2.2 Vector and Scalar Potentials
356(1)
B.2.3 Gauge
356(1)
B.2.4 Poynting Vector
357(1)
B.2.5 Maxwell Stress
357(1)
B.3 Lagrange and Hamilton Mechanics
358(1)
B.4 Special Relativity
359(2)
C Appendix to Plasmas Physics
361(14)
C.1 DKE Solution in Banana Regime
361(7)
C.2 DKE Solution for Fast Ion
368(7)
References 375(20)
Index 395
Dr. Mitsuru Kikuchi is Fusion Research and Development Directorate at Japan Atomic Energy Agency. He is also Guest Professor, Osaka University, Japan; Visiting Professor, Southwestern Institute of Physics, China; Visiting Professor, Modern Physics Institute, Fudan University, China; Visiting Professor, Chinese Academy of Sciences; and Chairman of IAEA's Nuclear Fusion Board of Editor.

He is author of the book "Frontiers in Fusion Research: Physics and Fusion" (Springer 2011)