Muutke küpsiste eelistusi

Fundamentals of Heat and Mass Transfer, 8e Wileyplus Registration Card plus Loose-Leaf Print Companion 8th ed. [Raamat]

(Department of Mechanical Engineering University of Connecticut)
  • Formaat: Book, kõrgus x laius x paksus: 251x201x27 mm, kaal: 1490 g
  • Ilmumisaeg: 01-Nov-2016
  • Kirjastus: Wiley
  • ISBN-10: 1119338603
  • ISBN-13: 9781119338604
Teised raamatud teemal:
  • Raamat
  • Hind: 178,90 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Book, kõrgus x laius x paksus: 251x201x27 mm, kaal: 1490 g
  • Ilmumisaeg: 01-Nov-2016
  • Kirjastus: Wiley
  • ISBN-10: 1119338603
  • ISBN-13: 9781119338604
Teised raamatud teemal:

This package includes a three-hole punched, loose-leaf edition of ISBN 9781119330103 and a registration code for the WileyPLUS course associated with the text. Before you purchase, check with your instructor or review your course syllabus to ensure that your instructor requires WileyPLUS.

For customer technical support, please visit http://www.wileyplus.com/support. WileyPLUS registration cards are only included with new products. Used and rental products may not include WileyPLUS registration cards.

Fundamentals of Heat and Mass Transfer, 8th Edition has been the gold standard of heat transfer pedagogy for many decades, with a commitment to continuous improvement by four authors’ with more than 150 years of combined experience in heat transfer education, research and practice. Applying the rigorous and systematic problem-solving methodology that this text pioneered an abundance of examples and problems reveal the richness and beauty of the discipline. This edition makes heat and mass transfer more approachable by giving additional emphasis to fundamental concepts, while highlighting the relevance of two of today’s most critical issues: energy and the environment.
Symbols xix
Chapter 1 Introduction
1(58)
1.1 What and How?
2(1)
1.2 Physical Origins and Rate Equations
3(9)
1.2.1 Conduction
3(3)
1.2.2 Convection
6(2)
1.2.3 Radiation
8(4)
1.2.4 The Thermal Resistance Concept
12(1)
1.3 Relationship to Thermodynamics
12(21)
1.3.1 Relationship to the First Law of Thermodynamics (Conservation of Energy)
13(15)
1.3.2 Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines
28(5)
1.4 Units and Dimensions
33(2)
1.5 Analysis of Heat Transfer Problems: Methodology
35(3)
1.6 Relevance of Heat Transfer
38(4)
1.7 Summary
42(3)
References
45(1)
Problems
45(14)
Chapter 2 Introduction to Conduction
59(40)
2.1 The Conduction Rate Equation
60(2)
2.2 The Thermal Properties of Matter
62(12)
2.2.1 Thermal Conductivity
63(7)
2.2.2 Other Relevant Properties
70(4)
2.3 The Heat Diffusion Equation
74(8)
2.4 Boundary and Initial Conditions
82(4)
2.5 Summary
86(1)
References
87(1)
Problems
87(12)
Chapter 3 One-Dimensional, Steady-State Conduction
99(110)
3.1 The Plane Wall
100(21)
3.1.1 Temperature Distribution
100(2)
3.1.2 Thermal Resistance
102(1)
3.1.3 The Composite Wall
103(2)
3.1.4 Contact Resistance
105(2)
3.1.5 Porous Media
107(14)
3.2 An Alternative Conduction Analysis
121(4)
3.3 Radial Systems
125(6)
3.3.1 The Cylinder
125(5)
3.3.2 The Sphere
130(1)
3.4 Summary of One-Dimensional Conduction Results
131(1)
3.5 Conduction with Thermal Energy Generation
131(12)
3.5.1 The Plane Wall
132(6)
3.5.2 Radial Systems
138(1)
3.5.3 Tabulated Solutions
139(1)
3.5.4 Application of Resistance Concepts
139(4)
3.6 Heat Transfer from Extended Surfaces
143(20)
3.6.1 A General Conduction Analysis
145(2)
3.6.2 Fins of Uniform Cross-Sectional Area
147(6)
3.6.3 Fin Performance Parameters
153(3)
3.6.4 Fins of Nonuniform Cross-Sectional Area
156(3)
3.6.5 Overall Surface Efficiency
159(4)
3.7 Other Applications of One-Dimensional, Steady-State Conduction
163(16)
3.7.1 The Bioheat Equation
163(4)
3.7.2 Thermoelectric Power Generation
167(8)
3.7.3 Nanoscale Conduction
175(4)
3.8 Summary
179(2)
References
181(1)
Problems
182(27)
Chapter 4 Two-Dimensional, Steady-State Conduction
209(44)
4.1 General Considerations and Solution Techniques
210(1)
4.2 The Method of Separation of Variables
211(4)
4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate
215(6)
4.4 Finite-Difference Equations
221(9)
4.4.1 The Nodal Network
221(1)
4.4.2 Finite-Difference Form of the Heat Equation: No Generation and Constant Properties
222(1)
4.4.3 Finite-Difference Form of the Heat Equation: The Energy Balance Method
223(7)
4.5 Solving the Finite-Difference Equations
230(6)
4.5.1 Formulation as a Matrix Equation
230(1)
4.5.2 Verifying the Accuracy of the Solution
231(5)
4.6 Summary
236(1)
References
237(1)
Problems
237
4S.1 The Graphical Method
1(4)
4S.1.1 Methodology of Constructing a Flux Plot
1(1)
4S.1.2 Determination of the Heat Transfer Rate
2(1)
4S.1.3 The Conduction Shape Factor
3(2)
4S.2 The Gauss-Seidel Method: Example of Usage
5(5)
References
10(1)
Problems
10(243)
Chapter 5 Transient Conduction
253(88)
5.1 The Lumped Capacitance Method
254(3)
5.2 Validity of the Lumped Capacitance Method
257(4)
5.3 General Lumped Capacitance Analysis
261(11)
5.3.1 Radiation Only
262(1)
5.3.2 Negligible Radiation
262(1)
5.3.3 Convection Only with Variable Convection Coefficient
263(1)
5.3.4 Additional Considerations
263(9)
5.4 Spatial Effects
272(1)
5.5 The Plane Wall with Convection
273(4)
5.5.1 Exact Solution
274(1)
5.5.2 Approximate Solution
274(2)
5.5.3 Total Energy Transfer: Approximate Solution
276(1)
5.5.4 Additional Considerations
276(1)
5.6 Radial Systems with Convection
277(7)
5.6.1 Exact Solutions
277(1)
5.6.2 Approximate Solutions
278(1)
5.6.3 Total Energy Transfer: Approximate Solutions
278(1)
5.6.4 Additional Considerations
279(5)
5.7 The Semi-Infinite Solid
284(7)
5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes
291(10)
5.8.1 Constant Temperature Boundary Conditions
291(2)
5.8.2 Constant Heat Flux Boundary Conditions
293(1)
5.8.3 Approximate Solutions
294(7)
5.9 Periodic Heating
301(3)
5.10 Finite-Difference Methods
304(14)
5.10.1 Discretization of the Heat Equation: The Explicit Method
304(7)
5.10.2 Discretization of the Heat Equation: The Implicit Method
311(7)
5.11 Summary
318(1)
References
319(1)
Problems
319
5S.1 Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere
12(4)
5S.2 Analytical Solutions of Multidimensional Effects
16(6)
References
22(1)
Problems
22(319)
Chapter 6 Introduction to Convection
341(54)
6.1 The Convection Boundary Layers
342(4)
6.1.1 The Velocity Boundary Layer
342(1)
6.1.2 The Thermal Boundary Layer
343(2)
6.1.3 The Concentration Boundary Layer
345(1)
6.1.4 Significance of the Boundary Layers
346(1)
6.2 Local and Average Convection Coefficients
346(7)
6.2.1 Heat Transfer
346(1)
6.2.2 Mass Transfer
347(6)
6.3 Laminar and Turbulent Flow
353(5)
6.3.1 Laminar and Turbulent Velocity Boundary Layers
353(2)
6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers
355(3)
6.4 The Boundary Layer Equations
358(4)
6.4.1 Boundary Layer Equations for Laminar Flow
359(3)
6.4.2 Compressible Flow
362(1)
6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations
362(10)
6.5.1 Boundary Layer Similarity Parameters
363(1)
6.5.2 Dependent Dimensionless Parameters
363(9)
6.6 Physical Interpretation of the Dimensionless Parameters
372(2)
6.7 Boundary Layer Analogies
374(8)
6.7.1 The Heat and Mass Transfer Analogy
375(3)
6.7.2 Evaporative Cooling
378(3)
6.7.3 The Reynolds Analogy
381(1)
6.8 Summary
382(1)
References
383(1)
Problems
384
6S.1 Derivation of the Convection Transfer Equations
25(11)
6S.1.1 Conservation of Mass
25(1)
6S.1.2 Newton's Second Law of Motion
26(3)
6S.1.3 Conservation of Energy
29(3)
6S.1.4 Conservation of Species
32(4)
References
36(1)
Problems
36(359)
Chapter 7 External Flow
395(74)
7.1 The Empirical Method
397(1)
7.2 The Flat Plate in Parallel Flow
398(11)
7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution
399(6)
7.2.2 Turbulent Flow over an Isothermal Plate
405(1)
7.2.3 Mixed Boundary Layer Conditions
406(1)
7.2.4 Unheated Starting Length
407(1)
7.2.5 Flat Plates with Constant Heat Flux Conditions
408(1)
7.2.6 Limitations on Use of Convection Coefficients
409(1)
7.3 Methodology for a Convection Calculation
409(8)
7.4 The Cylinder in Cross Flow
417(10)
7.4.1 Flow Considerations
417(2)
7.4.2 Convection Heat and Mass Transfer
419(8)
7.5 The Sphere
427(3)
7.6 Flow Across Banks of Tubes
430(9)
7.7 Impinging Jets
439(5)
7.7.1 Hydrodynamic and Geometric Considerations
439(1)
7.7.2 Convection Heat and Mass Transfer
440(4)
7.8 Packed Beds
444(1)
7.9 Summary
445(3)
References
448(1)
Problems
448(21)
Chapter 8 Internal Flow
469(70)
8.1 Hydrodynamic Considerations
470(5)
8.1.1 Flow Conditions
470(1)
8.1.2 The Mean Velocity
471(1)
8.1.3 Velocity Profile in the Fully Developed Region
472(2)
8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow
474(1)
8.2 Thermal Considerations
475(6)
8.2.1 The Mean Temperature
476(1)
8.2.2 Newton's Law of Cooling
477(1)
8.2.3 Fully Developed Conditions
477(4)
8.3 The Energy Balance
481(8)
8.3.1 General Considerations
481(1)
8.3.2 Constant Surface Heat Flux
482(3)
8.3.3 Constant Surface Temperature
485(4)
8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations
489(7)
8.4.1 The Fully Developed Region
489(5)
8.4.2 The Entry Region
494(2)
8.4.3 Temperature-Dependent Properties
496(1)
8.5 Convection Correlations: Turbulent Flow in Circular Tubes
496(8)
8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus
504(3)
8.7 Heat Transfer Enhancement
507(3)
8.8 Forced Convection in Small Channels
510(5)
8.8.1 Microscale Convection in Gases (0.1 $mUm $$ Dh $$ 100 $mUm)
510(1)
8.8.2 Microscale Convection in Liquids
511(1)
8.8.3 Nanoscale Convection (Dh $$ 100 nm)
512(3)
8.9 Convection Mass Transfer
515(2)
8.10 Summary
517(3)
References
520(1)
Problems
521(18)
Chapter 9 Free Convection
539(56)
9.1 Physical Considerations
540(2)
9.2 The Governing Equations for Laminar Boundary Layers
542(2)
9.3 Similarity Considerations
544(1)
9.4 Laminar Free Convection on a Vertical Surface
545(3)
9.5 The Effects of Turbulence
548(2)
9.6 Empirical Correlations: External Free Convection Flows
550(14)
9.6.1 The Vertical Plate
551(3)
9.6.2 Inclined and Horizontal Plates
554(5)
9.6.3 The Long Horizontal Cylinder
559(4)
9.6.4 Spheres
563(1)
9.7 Free Convection Within Parallel Plate Channels
564(3)
9.7.1 Vertical Channels
565(2)
9.7.2 Inclined Channels
567(1)
9.8 Empirical Correlations: Enclosures
567(6)
9.8.1 Rectangular Cavities
567(3)
9.8.2 Concentric Cylinders
570(1)
9.8.3 Concentric Spheres
571(2)
9.9 Combined Free and Forced Convection
573(1)
9.10 Convection Mass Transfer
574(1)
9.11 Summary
575(1)
References
576(1)
Problems
577(18)
Chapter 10 Boiling and Condensation
595(50)
10.1 Dimensionless Parameters in Boiling and Condensation
596(1)
10.2 Boiling Modes
597(1)
10.3 Pool Boiling
598(4)
10.3.1 The Boiling Curve
598(1)
10.3.2 Modes of Pool Boiling
599(3)
10.4 Pool Boiling Correlations
602(9)
10.4.1 Nucleate Pool Boiling
602(2)
10.4.2 Critical Heat Flux for Nucleate Pool Boiling
604(1)
10.4.3 Minimum Heat Flux
605(1)
10.4.4 Film Pool Boiling
605(1)
10.4.5 Parametric Effects on Pool Boiling
606(5)
10.5 Forced Convection Boiling
611(4)
10.5.1 External Forced Convection Boiling
612(1)
10.5.2 Two-Phase Flow
612(3)
10.5.3 Two-Phase Flow in Microchannels
615(1)
10.6 Condensation: Physical Mechanisms
615(2)
10.7 Laminar Film Condensation on a Vertical Plate
617(4)
10.8 Turbulent Film Condensation
621(5)
10.9 Film Condensation on Radial Systems
626(5)
10.10 Condensation in Horizontal Tubes
631(1)
10.11 Dropwise Condensation
632(1)
10.12 Summary
633(1)
References
633(2)
Problems
635(10)
Chapter 11 Heat Exchangers
645(56)
11.1 Heat Exchanger Types
646(2)
11.2 The Overall Heat Transfer Coefficient
648(3)
11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
651(11)
11.3.1 The Parallel-Flow Heat Exchanger
652(2)
11.3.2 The Counterflow Heat Exchanger
654(1)
11.3.3 Special Operating Conditions
655(7)
11.4 Heat Exchanger Analysis: The Effectiveness-NTU Method
662(8)
11.4.1 Definitions
662(1)
11.4.2 Effectiveness-NTU Relations
663(7)
11.5 Heat Exchanger Design and Performance Calculations
670(9)
11.6 Additional Considerations
679(8)
11.7 Summary
687(1)
References
688(1)
Problems
688
11S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers
40(4)
11S.2 Compact Heat Exchangers
44(5)
References
49(1)
Problems
50(651)
Chapter 12 Radiation: Processes and Properties
701(84)
12.1 Fundamental Concepts
702(3)
12.2 Radiation Heat Fluxes
705(2)
12.3 Radiation Intensity
707(9)
12.3.1 Mathematical Definitions
707(1)
12.3.2 Radiation Intensity and Its Relation to Emission
708(5)
12.3.3 Relation to Irradiation
713(2)
12.3.4 Relation to Radiosity for an Opaque Surface
715(1)
12.3.5 Relation to the Net Radiative Flux for an Opaque Surface
716(1)
12.4 Blackbody Radiation
716(10)
12.4.1 The Planck Distribution
717(1)
12.4.2 Wien's Displacement Law
718(1)
12.4.3 The Stefan-Boltzmann Law
718(1)
12.4.4 Band Emission
719(7)
12.5 Emission from Real Surfaces
726(9)
12.6 Absorption, Reflection, and Transmission by Real Surfaces
735(9)
12.6.1 Absorptivity
736(1)
12.6.2 Reflectivity
737(2)
12.6.3 Transmissivity
739(1)
12.6.4 Special Considerations
739(5)
12.7 Kirchhoff's Law
744(2)
12.8 The Gray Surface
746(6)
12.9 Environmental Radiation
752(8)
12.9.1 Solar Radiation
753(2)
12.9.2 The Atmospheric Radiation Balance
755(2)
12.9.3 Terrestrial Solar Irradiation
757(3)
12.10 Summary
760(4)
References
764(1)
Problems
764(21)
Chapter 13 Radiation Exchange Between Surfaces
785(64)
13.1 The View Factor
786(10)
13.1.1 The View Factor Integral
786(1)
13.1.2 View Factor Relations
787(9)
13.2 Blackbody Radiation Exchange
796(4)
13.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
800(17)
13.3.1 Net Radiation Exchange at a Surface
801(1)
13.3.2 Radiation Exchange Between Surfaces
802(6)
13.3.3 The Two-Surface Enclosure
808(2)
13.3.4 Two-Surface Enclosures in Series and Radiation Shields
810(2)
13.3.5 The Reradiating Surface
812(5)
13.4 Multimode Heat Transfer
817(3)
13.5 Implications of the Simplifying Assumptions
820(1)
13.6 Radiation Exchange with Participating Media
820(5)
13.6.1 Volumetric Absorption
820(1)
13.6.2 Gaseous Emission and Absorption
821(4)
13.7 Summary
825(1)
References
826(1)
Problems
827(22)
Chapter 14 Diffusion Mass Transfer
849(48)
14.1 Physical Origins and Rate Equations
850(5)
14.1.1 Physical Origins
850(1)
14.1.2 Mixture Composition
851(1)
14.1.3 Fick's Law of Diffusion
852(1)
14.1.4 Mass Diffusivity
853(2)
14.2 Mass Transfer in Nonstationary Media
855(8)
14.2.1 Absolute and Diffusive Species Fluxes
855(3)
14.2.2 Evaporation in a Column
858(5)
14.3 The Stationary Medium Approximation
863(1)
14.4 Conservation of Species for a Stationary Medium
863(7)
14.4.1 Conservation of Species for a Control Volume
864(1)
14.4.2 The Mass Diffusion Equation
864(2)
14.4.3 Stationary Media with Specified Surface Concentrations
866(4)
14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces
870(8)
14.5.1 Evaporation and Sublimation
871(1)
14.5.2 Solubility of Gases in Liquids and Solids
871(5)
14.5.3 Catalytic Surface Reactions
876(2)
14.6 Mass Diffusion with Homogeneous Chemical Reactions
878(3)
14.7 Transient Diffusion
881(6)
14.8 Summary
887(1)
References
888(1)
Problems
888(56)
Appendix A Thermophysical Properties of Matter 897(32)
Appendix B Mathematical Relations and Functions 929(6)
Appendix C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems 935(6)
Appendix D The Gauss---Seidel Method 941(2)
Appendix E The Convection Transfer Equations 943(4)
E.1 Conservation of Mass
944(1)
E.2 Newton's Second Law of Motion
944(1)
E.3 Conservation of Energy
945(1)
E.4 Conservation of Species
946(1)
Appendix F Boundary Layer Equations for Turbulent Flow 947(4)
Appendix G An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate 951(4)
Conversion Factors 955(1)
Physical Constants 956(1)
Index 957