Muutke küpsiste eelistusi

E-raamat: Fundamentals of Numerical Weather Prediction

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 01-Dec-2011
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139179645
  • Formaat - EPUB+DRM
  • Hind: 79,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 01-Dec-2011
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781139179645

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Me;te;o-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography"--

Provided by publisher.

Arvustused

"The present book is a good and very useful review of techniques and methods..provides interesting historical information...clearly organized, well written, and beautifully illustrated...There is also much to find, learn, and enjoy in this book for specialists in fluid dynamics, meteorologists, applied mathematicians, and other researchers interested in this area." - Yuri N. Skiba, Mathematical Reviews "The topic is treated in full mathematical detail on the advanced undergraduate level and aboveThe text is clearly written and the line of thought is easy to followThis book deserves a recommendation both for advanced students of meteorology and as a reference for experts in the field." - Manuel Vogel, Contemporary Physics

Muu info

A practical, accessible overview of weather forecasting and climate modeling techniques for graduate students, researchers and professionals in atmospheric science.
Foreword to the French edition Olivier Talagrand viii
Foreword to the English edition Andrew Staniforth x
Preface xi
Acknowledgments xiii
Partial list of symbols xv
1 Half a century of numerical weather prediction
1(14)
1.1 Introduction
1(1)
1.2 The early days
2(1)
1.3 Half a century of continual progress
3(8)
1.4 Developments in computing
11(4)
2 Weather prediction equations
15(24)
2.1 Introduction
15(1)
2.2 The simplifications and the corresponding models
16(8)
2.3 The equations in various systems of coordinates
24(5)
2.4 Some typical conformal projections
29(10)
3 Finite differences
39(18)
3.1 Introduction
39(1)
3.2 The finite difference method
39(7)
3.3 The grids used and their properties
46(9)
3.4 Conclusion
55(2)
4 Spectral methods
57(22)
4.1 Introduction
57(1)
4.2 Using series expansions in terms of functions
57(4)
4.3 Spectral method on the sphere
61(12)
4.4 Spectral method on a doubly periodic domain
73(6)
5 The effects of discretization
79(27)
5.1 Introduction
79(1)
5.2 The linearized barotropic model
79(3)
5.3 Effect of horizontal discretization
82(5)
5.4 Various time integration schemes
87(15)
5.5 Time filtering
102(1)
5.6 Effect of spatial discretization on stability
103(3)
6 Barotropic models
106(30)
6.1 Barotropic models using the vorticity equation
106(8)
6.2 The shallow water barotropic model
114(13)
6.3 Spectral processing of the shallow water model
127(8)
6.4 Practical use of the shallow water model
135(1)
7 Baroclinic model equations
136(21)
7.1 Introduction
136(1)
7.2 Introducing a general vertical coordinate
136(1)
7.3 Application to the primitive equations
137(3)
7.4 Various vertical coordinates
140(6)
7.5 Generalization to nonhydrostatic equations
146(5)
7.6 Conservation properties of the equations
151(4)
7.7 Conclusion
155(2)
8 Some baroclinic models
157(35)
8.1 Introduction
157(1)
8.2 The context of discretization
157(3)
8.3 Vertical discretization of the equations
160(7)
8.4 A sigma coordinate and finite difference model
167(12)
8.5 Formalization of the semi-implicit method
179(3)
8.6 A variable resolution spectral model
182(8)
8.7 Lagrangian advection in baroclinic models
190(2)
9 Physical parameterizations
192(53)
9.1 Introduction
192(2)
9.2 Equations for a multi-phase moist atmosphere
194(5)
9.3 Radiation
199(14)
9.4 Boundary layer and vertical diffusion
213(12)
9.5 Precipitation resolved at the grid scale
225(6)
9.6 Convection
231(6)
9.7 Effect of sub-grid orography
237(4)
9.8 Horizontal diffusion
241(2)
9.9 Validation of physical parameterizations
243(2)
10 Operational forecasting
245(40)
10.1 Introduction
245(1)
10.2 Meteorological observations
245(3)
10.3 Objective analysis and data assimilation
248(11)
10.4 Initialization of data on starting the model
259(4)
10.5 Coupled models
263(3)
10.6 Post-processing of model output
266(2)
10.7 Local forecasting
268(2)
10.8 The forecasting process
270(1)
10.9 Forecast verification
271(5)
10.10 Ensemble forecasting
276(4)
10.11 International cooperation
280(1)
10.12 Future prospects
281(4)
Appendix A Examples of nonhydrostatic models
285(30)
A.1 Introduction
285(1)
A.2 The AROME model
285(11)
A.3 The WRF/ARW model
296(19)
Further reading 315(3)
References 318(19)
Index 337
Jean Coiffier is now retired from Météo-France, where he was Ingénieur en Chef des Ponts et Chaussées, and is a member of the Société Météorologique de France. His involvement in meteorological science began in 1968 at the new Algerian Meteorological Service, implementing elements of a modest meteorological forecast suite on a small computer, before joining the Direction de la Météorologie Nationale (later Météo-France) where he took part in the development and implementation of operational models. In 1989 he became the head of the General Forecast Office. He worked there until his retirement, also giving regular lectures on numerical weather prediction to students of the École Nationale de la Météorologie and training courses to professional forecasters. He also played an active role in realising Computed Aided Learning modules devoted to numerical modelling and forecasting methods.