Muutke küpsiste eelistusi

E-raamat: Fundamentals of Solar Cell Design

Edited by , Edited by (University of Tehran (UT); Shahrood University of Technology), Edited by (National Center for Nanoscience and Technology (NCNST, Beijing)), Edited by (Aligarh Muslim University, Aligarh, India)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jul-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119725039
  • Formaat - PDF+DRM
  • Hind: 225,94 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Jul-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119725039

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of solar cells and explores the history of evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and other fundamentals of solar cell design.

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvested energy from the suns light radiation into electricity are in an ever-growing demand for future global energy production.

Solar cell-based energy harvesting has attracted worldwide attention for its notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, and economy friendly and operational costs. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics.

This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells characterization, analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

This outstanding new volume:





Provides state-of-the-art information about solar cells Is a unique reference guide for researchers in solar energy Includes novel innovations in the field of solar cell technology

Audience: This book is a unique reference guide that can be used by faculty, students, researchers, engineers, device designers and industrialists who are working and learning in the fields of semiconductors, chemistry, physics, electronics, light science, material science, flexible energy conversion, industrial, and renewable energy sectors..
Preface xv
1 Organic Solar Cells 1(54)
Yadavalli Venkata Durga Nageswar
Vaidya Jayathirtha Rao
1.1 Introduction
1(2)
1.2 Classification of Solar Cells
3(1)
1.3 Solar Cell Structure
4(1)
1.4 Photovoltaic Parameters or Terminology Used in BHJOSCs
5(1)
1.4.1 Open-Circuit Voltage Voc
5(1)
1.4.2 Short-Circuit Current Jsc
5(1)
1.4.3 Incident-Photon-to-Current Efficiency (IPCE)
5(1)
1.4.4 Power Conversion Efficiency ηp (PCE)
6(1)
1.4.5 Fill Factor (FF)
6(1)
1.5 Some Basic Design Principles/Thumb Rules Associated With Organic Materials Required for BHJOSCs
6(1)
1.6 Recent Research Advances in Small-Molecule Acceptor and Polymer Donor Types
7(23)
1.7 Recent Research Advances in All Small-Molecule Acceptor and Donor Types
30(17)
1.8 Conclusion
47(1)
Acknowledgement
48(1)
References
48(7)
2 Plasmonic Solar Cells 55(28)
T. Shiyani
S.K. Mahapatra
I. Banerjee
2.1 Introduction
56(4)
2.1.1 Plasmonic Nanostructure
58(1)
2.1.2 Classification of Plasmonic Nanostructures
59(1)
2.2 Principles and Working Mechanism of Plasmonic Solar Cells
60(2)
2.2.1 Working Principle
60(1)
2.2.2 Mechanism of Plasmonic Solar Cells
61(1)
2.3 Important Optical Properties
62(2)
2.3.1 Trapping of Light
63(1)
2.3.2 Scattering and Absorption of Sunlight
63(1)
2.3.3 Multiple Energy Levels
63(1)
2.4 Advancements in Plasmonic Solar Cells
64(8)
2.4.1 Direct Plasmonic Solar Cells
65(4)
2.4.2 Plasmonic-Enhanced Solar Cell
69(1)
2.4.3 Plasmonic Thin Film Solar Cells
69(1)
2.4.4 Plasmonic Dye-Sensitized Solar Cells (PDSSCs)
70(1)
2.4.5 Plasmonic Photoelectrochemical Cells
71(1)
2.4.6 Plasmonic Quantum Dot (QD) Solar Cells
71(1)
2.4.7 Plasmonic Perovskite Solar Cells
72(1)
2.4.8 Plasmonic Hybrid Solar Cells
72(1)
2.5 Conclusion and Future Aspects
72(1)
Acknowledgements
73(1)
References
73(10)
3 Tandem Solar Cell 83(20)
Umesh Fegade
List of Abbreviations
83(2)
3.1 Introduction
85(1)
3.2 Review of Organic Tandem Solar Cell
86(3)
3.3 Review of Inorganic Tandem Solar Cell
89(6)
3.4 Conclusion
95(1)
References
96(7)
4 Thin-Film Solar Cells 103(14)
Gobinath Velu Kaliyannan
Raja Gunasekaran
Santhosh Sivaraj
Saravanakumar Jaganathan
Rajasekar Rathanasamy
4.1 Introduction
104(1)
4.2 Why Thin-Film Solar Cells?
105(1)
4.3 Amorphous Silicon
105(3)
4.4 Cadmium Telluride
108(3)
4.5 Copper Indium Diselenide Solar Cells
111(1)
4.6 Comparison Between Flexible a-Si:H, CdTe, and CIGS Cells and Applications
112(1)
4.7 Conclusion
113(1)
References
114(3)
5 Biohybrid Solar Cells 117(20)
Sapana Jadoun
Ufana Riaz
Abbreviations
117(1)
5.1 Introduction
118(1)
5.2 Photovoltaics
119(1)
5.3 Solar Cells
119(2)
5.3.1 First-Generation
120(1)
5.3.2 Second-Generation
120(1)
5.3.3 Third-Generation
120(1)
5.3.4 Fourth-Generation
121(1)
5.4 Biohybrid Solar Cells
121(1)
5.5 Role of Photosynthesis
122(1)
5.6 Plant-Based Biohybrid Devices
122(4)
5.6.1 PS I-Based Biohybrid Devices
123(2)
5.6.2 PS II-Based Biohybrid Devices
125(1)
5.7 Dye-Sensitized Solar Cells
126(1)
5.8 Polymer and Semiconductors-Based Biohybrid Solar Cells
126(3)
5.9 Conclusion
129(1)
References
129(8)
6 Dye-Sensitized Solar Cells 137(32)
Santhosh Sivaraj
Gobinath Velu Kaliyannan
Mohankumar Anandraj
Moganapriya Chinnasamy
Rajasekar Rathanasamy
6.1 Introduction
138(1)
6.2 Cell Architecture and Working Mechanism
139(3)
6.3 Fabrication of Simple DSSC in Lab Scale
142(2)
6.4 Electrodes
144(1)
6.5 Counter Electrode
145(1)
6.6 Blocking Layer
146(1)
6.7 Electrolytes Used
147(5)
6.7.1 Liquid-Based Electrolytes
148(1)
6.7.1.1 Electrical Additives
148(1)
6.7.1.2 Organic Solvents
148(1)
6.7.1.3 Ionic Liquids
149(1)
6.7.1.4 Iodide/Triiodide- Free Mediator and Redox Couples
149(1)
6.7.2 Quasi-Solid-State Electrolytes
149(1)
6.7.2.1 Thermoplastic-Based Polymer Electrolytes
150(1)
6.7.2.2 Thermosetting Polymer Electrolytes
150(1)
6.7.3 Solid-State Transport Materials
150(2)
6.7.3.1 Inorganic Hole Transport Materials
151(1)
6.7.3.2 Organic Hole Transport Materials
151(1)
6.7.3.3 Solid-State Ionic Conductors
151(1)
6.8 Commonly Used Natural Dyes in DSSC
152(2)
6.8.1 Chlorophyll
152(1)
6.8.2 Flavonoids
152(1)
6.8.3 Anthocyanins
153(1)
6.8.4 Carotenoids
154(1)
6.9 Calculations
154(10)
6.9.1 Power Conversion Efficiency
154(9)
6.9.2 Fill Factor
163(1)
6.9.3 Open-Circuit Voltage
163(1)
6.9.4 Short Circuit Current
163(1)
6.9.5 Determination of Energy Gap of Electrode Material Adsorbed With Natural Dye
163(1)
6.9.6 Absorption Coefficient
164(1)
6.9.7 Dye Adsorption
164(1)
6.10 Conclusion
164(1)
References
165(4)
7 Characterization and Theoretical Modeling of Solar Cells 169(48)
Masoud Darvish Ganji
Mahyar Rezvani
Sepideh Tanreh
7.1 Introduction
170(2)
7.2 Classification of SC
172(3)
7.2.1 Inorganic Solar Cells
173(1)
7.2.2 Organic Solar Cell
173(2)
7.3 Working Principle of DSSC
175(1)
7.4 Operation Principle of DSSC
176(1)
7.5 Photovoltaic Parameters
177(4)
7.6 Theoretical and Computational Methods
181(17)
7.6.1 Density Functional Theory (DFT)
182(1)
7.6.2 Basis Sets
183(1)
7.6.3 TDDFT Method
183(1)
7.6.4 Molecular Descriptors
184(4)
7.6.5 Force Field Parameterization for MD Simulations
188(1)
7.6.6 Excited States
189(1)
7.6.7 UV-Vis Spectroscopy
190(2)
7.6.8 Charge Transfer and Carrier Transport
192(1)
7.6.9 Coarse-Grained (CG) Simulations
193(1)
7.6.10 Kinetic Monte Carlo (KMC) Modeling
193(2)
7.6.11 Car-Parrinello Method
195(1)
7.6.12 Solvent Effects
196(1)
7.6.13 Global Reactivity Descriptors
196(2)
7.7 Conclusion
198(1)
References
199(18)
8 Efficient Performance Parameters for Solar Cells 217(30)
Figen Balo
Lutfu S. Sua
8.1 Introduction
218(7)
8.1.1 Potential, Production, and Climate of Ankara
225(1)
8.2 Solar Radiation Intensity Calculation
225(4)
8.2.1 Horizontal Superficies
225(3)
8.2.1.1 On a Daily Basis Total Sun Irradiation
225(2)
8.2.1.2 Daily Diffuse Sun Irradiation
227(1)
8.2.1.3 Momentary Total Sun Irradiation
227(1)
8.2.1.4 Direct and Diffuse Sun Radiation
228(1)
8.2.2 On Inclined Superficies, Computing Sun Irradiation Intensity
228(1)
8.2.2.1 Direct Momentary Sun Radiation
228(1)
8.2.2.2 Diffuse Sun Radiation
228(1)
8.2.2.3 Momentary Reflecting Radiation
229(1)
8.2.2.4 Total Sun Radiation
229(1)
8.3 Methodology
229(9)
8.3.1 The Solar Radiation Assessments by Correlation Models With MATLAB Simulation Software
229(4)
8.3.2 MATLAB Simulation Results and Findings
233(1)
8.3.3 For Ankara Province, the Determinants of the Most Efficiency Solar Cell With AHP Methodology
233(5)
8.4 Conclusions
238(2)
References
240(7)
9 Practices to Enhance Conversion Efficiencies in Solar Cell 247(24)
Andreea Irina Barzic
9.1 Introduction
247(2)
9.2 Basics on Conversion Efficiency
249(4)
9.3 Approaches for Improving Conversion Efficiencies in Solar Cells
253(11)
9.4 Conclusion
264(1)
Acknowledgements
264(1)
References
265(6)
10 Solar Cell Efficiency Energy Materials 271(46)
Zeeshan Abid
Faiza Wahad
Sughra Gulzar
Muhammad Faheem Ashiq
Muhammad Shahid Aslam
Munazza Shahid
Muhammad Altaf
Raja Shahid Ashraf
10.1 Introduction
272(2)
10.2 Solar Cell Efficiency
274(1)
10.3 Historical Development of Solar Cell Materials
275(2)
10.4 Solar Cell Materials and Efficiencies
277(25)
10.4.1 Crystalline Silicon
278(4)
10.4.2 Silicon Thin-Film Alloys
282(2)
10.4.3 III-V Semiconductors
284(3)
10.4.4 Chalcogenide
287(2)
10.4.4.1 Chalcopyrites
287(1)
10.4.4.2 Cadmium Telluride (CdTe)
288(1)
10.4.5 Organic Materials
289(4)
10.4.6 Hybrid Organic-Inorganic Materials
293(7)
10.4.6.1 Dye-Sensitized Solar Cell Materials
293(3)
10.4.6.2 Perovskites
296(4)
10.4.7 Quantum Dots
300(2)
10.5 Conclusion and Prospects
302(1)
References
303(14)
11 Analytical Tools for Solar Cell 317(28)
Mohamad Saufi Rosmi
Ong Suu Wan
Mohamad Azuwa Mohamed
Zul Adlan Mohd Hir
Wan Nur Aini Wan Mokhtar
11.1 Introduction
318(1)
11.2 Transient Absorption Spectroscopy
319(4)
11.2.1 Application of Transient Absorption Spectroscopy in Solar Cells
320(3)
11.3 Electron Tomography
323(4)
11.3.1 Application of Electron Tomography (ET) in Solar Cells
324(3)
11.4 Conductive Atomic Force Microscopy (C-AFM)
327(3)
11.4.1 Application of C-AFM in Solar Cells
329(1)
11.5 Kelvin Probe Force Microscopy
330(5)
11.5.1 Application of Scanning Kelvin Probe Force Microscopy for Solar Cells
334(1)
11.6 Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy
335(5)
11.6.1 Application of Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy in Solar Cell
338(2)
11.7 Conclusion
340(1)
References
340(5)
12 Applications of Solar Cells 345(26)
Mohd Imran Ahamed
Naushad Anwar
12.1 Introduction
345(3)
12.2 An Overview on Photovoltaic Cell
348(6)
12.2.1 History
348(1)
12.2.2 Working Principle of Solar Cell
348(3)
12.2.3 First-Generation Photovoltaic Cells: Crystalline Silicon Form
351(1)
12.2.4 Second-Generation Photovoltaic Cells: Thin-Film Solar Cells
352(1)
12.2.5 Third-Generation Photovoltaic Cells
353(1)
12.3 Applications of Solar Cells
354(8)
12.3.1 Perovskite Solar Cell
354(1)
12.3.2 Dye-Sensitized Solar Cell
355(1)
12.3.3 Nanostructured Inorganic-Organic Heterojunction Solar Cells (NSIOHSCs)
356(1)
12.3.4 Polymer Solar Cells
357(1)
12.3.5 Quantum Dot Solar Cell (QDCs)
358(2)
12.3.6 Organic Solar Cells
360(2)
12.4 Conclusion and Summary
362(1)
References
362(9)
13 Challenges of Stability in Perovskite Solar Cells 371(22)
Mutayyab Afreen
Jazib Ali
Muhammad Bilal
13.1 Introduction
371(2)
13.2 Degradation Phenomena and Stability Measures in Perovskite
373(6)
13.2.1 Thermal Stability
373(2)
13.2.2 Structural and Chemical Stability
375(1)
13.2.3 Oxygen and Moisture
376(2)
13.2.4 Visible and UV Light Exposure
378(1)
13.3 Stability-Interface Interplay
379(3)
13.3.1 Chemical Reaction at the Interface
379(1)
13.3.2 Degradation on the Top Electrode
380(1)
13.3.3 Hysteresis Phenomenon in PSC Devices
381(1)
13.4 Effect of Selective Contacts on Stability
382(5)
13.4.1 Electron-Transport Layers
382(2)
13.4.2 Hole Transport Layers
384(3)
13.4 Conclusion
387(1)
References
387(6)
14 State-of-the-Art and Prospective of Solar Cells 393(68)
Zahra Pezeshki
Abdelhalim Zekry
Acronyms
393(3)
14.1 Introduction
396(1)
14.2 State-of-the-Art of Solar Cells
396(47)
14.2.1 Production Volume
400(1)
14.2.2 Cost Breakdown
400(1)
14.2.3 Main Technologies
401(63)
14.2.3.1 Si Solar Cell Arrays
401(2)
14.2.3.2 DSSCs
403(1)
14.2.3.3 Photoanodes
404(1)
14.2.3.4 C/Si Heterojunctions
404(6)
14.2.3.5 a-C/Si Heterojunctions
410(1)
14.2.3.6 Non-Fullerene Acceptor Bulk Heterojunctions
410(1)
14.2.3.7 a-Si
411(1)
14.2.3.8 Perovskites
411(2)
14.2.3.9 Metal-Halide-Based Perovskites
413(2)
14.2.3.10 Sn-Based Perovskites
415(1)
14.2.3.11 Heavily Doped Solar Cells
416(1)
14.2.3.12 PV Building Substrates
416(6)
14.2.3.13 Solar Tracking System
422(3)
14.2.3.14 Solar Concentrators
425(1)
14.2.3.15 Solar Power Satellite
426(1)
14.2.3.16 Roof-Top Solar PV System
427(1)
14.2.3.17 Short-Wavelength Solar-Blind Detectors
428(1)
14.2.3.18 GCPVS
429(2)
14.2.3.19 Microwave Heating in Si Solar Cell Fabrication
431(1)
14.2.3.20 Refrigeration PV System
432(1)
14.2.3.21 Solar Collectors and Receivers
433(2)
14.2.3.22 Solar Drying System
435(1)
14.2.3.23 Water Networks With Solar PV Energy
436(1)
14.2.3.24 Wind and Solar Integrated to Smart Grid
437(3)
14.2.3.25 Green Data Centers
440(3)
14.3 Prospective of Solar Cells
443(2)
14.4 Conclusion
445(2)
References
447(14)
15 Semitransparent Perovskite Solar Cells 461(44)
Faiza Wahad
Zeeshan Abid
Sughra Gulzar
Muhammad Shahid Aslam
Saqib Rafique
Munazza Shahid
Muhammad Altaf
Raja Shahid Ashraf
15.1 Introduction
462(2)
15.2 Device Architectures
464(2)
15.2.1 Conventional n-i-p Device Structure
465(1)
15.2.2 Inverted p-i-n Device Structure
465(1)
15.3 Optical Assessment
466(8)
15.3.1 Average Visible Transmittance
466(1)
15.3.2 Corresponding Color Temperature
467(1)
15.3.3 Color Rendering Index
468(1)
15.3.4 Transparency Color Perception
468(3)
15.3.5 Light Management
471(3)
15.4 Materials
474(10)
15.4.1 Photoactive Layer
474(5)
15.4.2 Charge Transport Layers (ETL and HTL)
479(2)
15.4.3 Transparent Electrode
481(3)
15.5 Applications
484(8)
15.5.1 Building-Integrated Photovoltaics
484(2)
15.5.2 Tandem Devices
486(6)
15.6 Conclusion
492(1)
References
492(13)
16 Flexible Solar Cells 505(32)
Santosh Patil
Rushi Jani
Nisarg Purabiarao
Archan Desai
Ishan Desai
Kshitij Bhargava
16.1 Introduction
505(5)
16.1.1 Need for Solar Energy Harnessing
505(1)
16.1.2 Brief Overview of Generations of Solar Cells
506(2)
16.1.3 Limitations of Solar Cells
508(1)
16.1.4 What is Flexible Solar Cell (FSC)?
509(1)
16.2 Materials for FSCs
510(4)
16.2.1 Semiconductors
510(2)
16.2.2 Substrates
512(1)
16.2.3 Electrodes
513(1)
16.2.4 Encapsulations
514(1)
16.3 Thin-Film Deposition
514(8)
16.3.1 R2R Processing
515(1)
16.3.2 Chemical Bath Deposition
516(1)
16.3.3 Chemical Vapor Deposition
517(1)
16.3.4 Dip Coating
518(2)
16.3.5 Spin Coating
520(1)
16.3.6 Screen Printing
521(1)
16.4 Characterizations for FSCs
522(9)
16.4.1 Material Characterization
523(6)
16.4.2 Device Characterization
529(2)
16.5 Issues in FSCs
531(1)
16.6 Performance Comparison of RSCs and FSCs
532(1)
16.7 Applications of Flexible Solar Cell
532(1)
16.8 Conclusion
533(1)
References
534(3)
Index 537
Inamuddin, PhD, is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 18 book chapters, and 120 edited books with multiple well-known publishers.

Mohd Imran Ahamed, PhD, is a research associate in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in various international scientific journals and has co-edited multiple books. His research work includes ion-exchange chromatography, wastewater treatment, and analysis, bending actuator and electrospinning.

Rajender Boddula, PhD, is currently working for the Chinese Academy of Sciences Presidents International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals. He is also serving as an editorial board member and a referee for several reputed international peer-reviewed journals. He has published edited books with numerous publishers and has authored over twenty book chapters.

Mashallah Rezakazemi, PhD, received his doctorate from the University of Tehran (UT) in 2015. In his first appointment, he served as associate professor in the Faculty of Chemical and Materials Engineering at Shahrood University of Technology. He has co-authored in more than 140 highly cited journal publications, conference articles and book chapters. He has received numerous major awards and grants from various funding agencies in recognition of his research. Notable among these are Khwarizmi Youth Award from the Iranian Research Organization for Science and Technology (IROST), and the Outstanding Young Researcher Award in Chemical Engineering from the Academy of Sciences of Iran. He was named a top 1% most Highly Cited Researcher by Web of Science (ESI).