Muutke küpsiste eelistusi

E-raamat: Fusion Plasma Physics

(Georgia Institute of Technology)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 09-Nov-2012
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527669530
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 135,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 09-Nov-2012
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527669530
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Stacey (Georgia Institute of Technology, US) presents a textbook for graduate and advanced undergraduate students in physics, nuclear engineering, and other disciplines offering courses in fusion plasma physics. He incorporates the significant developments in magnetic fusion plasma physics and supporting technology that have emerged during the nearly seven years since the first edition was published. The topics include magnetic confinement, plasma equilibria, turbulent transport, plasma edge, and operational limits. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics.
The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. -- are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.

Arvustused

This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research.  (ETDE Energy Database, 1 November 2012)

 

1 Basic Physics
1(22)
1.1 Fusion
1(6)
1.2 Plasma
7(3)
1.3 Coulomb Collisions
10(7)
1.4 Electromagnetic Theory
17(6)
2 Motion of Charged Particles
23(20)
2.1 Gyromotion and Drifts
23(10)
2.1.1 Gyromotion
23(3)
2.1.2 E x B Drift
26(1)
2.1.3 Grad-B Drift
27(2)
2.1.4 Polarization Drift
29(1)
2.1.5 Curvature Drift
30(3)
2.2 Constants of the Motion
33(5)
2.2.1 Magnetic Moment
33(1)
2.2.2 Second Adiabatic Invariant
34(2)
2.2.3 Canonical Angular Momentum
36(2)
2.3 Diamagnetism
38(5)
3 Magnetic Confinement
43(24)
3.1 Confinement in Mirror Fields
43(8)
3.1.1 Simple Mirror
43(5)
3.1.2 Tandem Mirrors
48(3)
3.2 Closed Toroidal Confinement Systems
51(16)
3.2.1 Confinement
51(4)
3.2.2 Flux Surfaces
55(2)
3.2.3 Trapped Particles
57(4)
3.2.4 Transport Losses
61(6)
4 Kinetic Theory
67(20)
4.1 Boltzmann and Vlasov Equations
68(1)
4.2 Drift Kinetic Approximation
68(3)
4.3 Fokker-Planck Theory of Collisions
71(7)
4.4 Plasma Resistivity
78(2)
4.5 Coulomb Collisional Energy Transfer
80(4)
4.6 Krook Collision Operators
84(3)
5 Fluid Theory
87(18)
5.1 Moments Equations
87(4)
5.2 One-Fluid Model
91(4)
5.3 Magnetohydrodynamic Model
95(3)
5.4 Anisotropic Pressure Tensor Model
98(2)
5.5 Strong Field, Transport Time Scale Ordering
100(5)
6 Plasma Equilibria
105(36)
6.1 General Properties
105(2)
6.2 Axisymmetric Toroidal Equilibria
107(6)
6.3 Large Aspect Ratio Tokamak Equilibria
113(6)
6.4 Safety Factor
119(3)
6.5 Shafranov Shift
122(3)
6.6 Beta
125(2)
6.7 Magnetic Field Diffusion and Flux Surface Evolution
127(3)
6.8 Anisotropic Pressure Equilibria
130(2)
6.9 Elongated Equilibria
132(9)
6.9.1 Geometry
132(2)
6.9.2 Flux surface average
134(1)
6.9.3 Equivalent toroidal models
134(2)
6.9.4 Interpretation of thermal diffusivities from measured temperature gradients
136(1)
6.9.5 Prediction of poloidal distribution of conductive heat flux
137(1)
6.9.6 Mapping radial gradients to different poloidal locations
138(3)
7 Waves
141(24)
7.1 Waves in an Unmagnetized Plasma
141(3)
7.1.1 Electromagnetic Waves
141(2)
7.1.2 Ion Sound Waves
143(1)
7.2 Waves in a Uniformly Magnetized Plasma
144(5)
7.2.1 Electromagnetic Waves
144(3)
7.2.2 Shear Alfven Wave
147(2)
7.3 Langmuir Waves and Landau Damping
149(3)
7.4 Vlasov Theory of Plasma Waves
152(6)
7.5 Electrostatic Waves
158(7)
8 Instabilities
165(50)
8.1 Hydromagnetic Instabilities
168(7)
8.1.1 MHD Theory
169(1)
8.1.2 Chew-Goldberger-Low Theory
170(2)
8.1.3 Guiding Center Theory
172(3)
8.2 Energy Principle
175(4)
8.3 Pinch and Kink Instabilities
179(4)
8.4 Interchange (Flute) Instabilities
183(6)
8.5 Ballooning Instabilities
189(4)
8.6 Drift Wave Instabilities
193(3)
8.7 Resistive Tearing Instabilities
196(6)
8.7.1 Slab Model
196(1)
8.7.2 MHD Regions
197(2)
8.7.3 Resistive Layer
199(1)
8.7.4 Magnetic Islands
200(2)
8.8 Kinetic Instabilities
202(9)
8.8.1 Electrostatic Instabilities
202(1)
8.8.2 Collisionless Drift Waves
203(2)
8.8.3 Electron Temperature Gradient Instabilities
205(1)
8.8.4 Ion Temperature Gradient Instabilities
206(1)
8.8.5 Loss-Cone and Drift-Cone Instabilities
207(4)
8.9 Sawtooth Oscillations
211(4)
9 Neoclassical Transport
215(48)
9.1 Collisional Transport Mechanisms
215(7)
9.1.1 Particle Fluxes
215(2)
9.1.2 Heat Fluxes
217(1)
9.1.3 Momentum Fluxes
218(2)
9.1.4 Friction Force
220(1)
9.1.5 Thermal Force
220(2)
9.2 Classical Transport
222(3)
9.3 Neoclassical Transport - Toroidal Effects in Fluid Theory
225(6)
9.4 Multifluid Transport Formalism
231(3)
9.5 Closure of Fluid Transport Equations
234(7)
9.5.1 Kinetic Equations for Ion-Electron Plasma
234(4)
9.5.2 Transport Parameters
238(3)
9.6 Neoclassical Transport-Trapped Particles
241(6)
9.7 Extended Neoclassical Transport - Fluid Theory
247(4)
9.7.1 Radial Electric Field
248(1)
9.7.2 Toroidal Rotation
249(1)
9.7.3 Transport Fluxes
249(2)
9.8 Electrical Currents
251(2)
9.8.1 Bootstrap Current
251(1)
9.8.2 Total Current
252(1)
9.9 Orbit Distortion
253(3)
9.9.1 Toroidal Electric Field - Ware Pinch
253(1)
9.9.2 Potato Orbits
254(1)
9.9.3 Orbit Squeezing
255(1)
9.10 Neoclassical Ion Thermal Diffusivity
256(2)
9.11 Paleoclassical Electron Thermal Diffusivity
258(1)
9.12 Transport in a Partially Ionized Gas
259(4)
10 Plasma Rotation
263(30)
10.1 Neoclassical Viscosity
263(9)
10.1.1 Rate-of-Strain Tensor in Toroidal Geometry
263(1)
10.1.2 Viscous Stress Tensor
264(1)
10.1.3 Toroidal Viscous Force
265(4)
10.1.4 Parallel Viscous Force
269(1)
10.1.5 Neoclassical Viscosity Coefficients
270(2)
10.2 Rotation Calculations
272(9)
10.2.1 Poloidal Rotation and Density Asymmetries
272(3)
10.2.2 Shaing-Sigmar-Stacey Parallel Viscosity Model
275(1)
10.2.3 Stacey-Sigmar Poloidal Rotation Model
276(4)
10.2.4 Radial Electric Field and Toroidal Rotation Velocities
280(1)
10.3 Momentum Confinement Times
281(2)
10.3.1 Theoretical
281(1)
10.3.2 Experimental
282(1)
10.4 Rotation and Transport in Elongated Geometry
283(10)
10.4.1 Flux surface coordinate system
283(2)
10.4.2 Flux surface average
285(1)
10.4.3 Differential Operators in Generalized Geometry
285(1)
10.4.4 Fluid Equations in Miller Elongated Flux Surface Coordinates
286(7)
11 Turbulent Transport
293(30)
11.1 Electrostatic Drift Waves
293(6)
11.1.1 General
293(3)
11.1.2 Ion Temperature Gradient Drift Waves
296(1)
11.1.3 Quasilinear Transport Analysis
296(2)
11.1.4 Saturated Fluctuation Levels
298(1)
11.2 Magnetic Fluctuations
299(2)
11.3 Wave-Wave Interactions
301(3)
11.3.1 Mode Coupling
301(1)
11.3.2 Direct Interaction Approximation
302(2)
11.4 Drift Wave Eigenmodes
304(2)
11.5 Microinstability thermal diffusivity models
306(9)
11.5.1 Ion transport
307(5)
11.5.2 Electron transport
312(3)
11.6 Gyrokinetic and Gyrofiuid Theory
315(6)
11.6.1 Gyrokinetic Theory of Turbulent Transport
316(2)
11.6.2 Gyrofiuid Theory of Turbulent Transport
318(3)
11.7 Zonal Flows
321(2)
12 Heating and Current Drive
323(32)
12.1 Inductive
323(3)
12.2 Adiabatic Compression
326(3)
12.3 Fast Ions
329(10)
12.3.1 Neutral Beam Injection
329(2)
12.3.2 Fast Ion Energy Loss
331(3)
12.3.3 Fast Ion Distribution
334(2)
12.3.4 Neutral Beam Current Drive
336(1)
12.3.5 Toroidal Alfven Instabilities
337(2)
12.4 Electromagnetic Waves
339(16)
12.4.1 Wave Propagation
339(3)
12.4.2 Wave Heating Physics
342(4)
12.4.3 Ion Cyclotron Resonance Heating
346(1)
12.4.4 Lower Hybrid Resonance Heating
347(1)
12.4.5 Electron Cyclotron Resonance Heating
348(1)
12.4.6 Current Drive
349(6)
13 Plasma-Material Interaction
355(18)
13.1 Sheath
355(3)
13.2 Recycling
358(1)
13.3 Atomic and Molecular Processes
359(5)
13.4 Penetration of Recycling Neutrals
364(1)
13.5 Sputtering
365(2)
13.6 Impurity Radiation
367(6)
14 Divertors
373(52)
14.1 Configuration, Nomenclature and Physical Processes
373(3)
14.2 Simple Divertor Model
376(6)
14.2.1 Strip Geometry
376(1)
14.2.2 Radial Transport and Widths
376(2)
14.2.3 Parallel Transport
378(1)
14.2.4 Solution of Plasma Equations
379(1)
14.2.5 Two-Point Model
380(2)
14.3 Divertor Operating Regimes
382(3)
14.3.1 Sheath-Limited Regime
382(1)
14.3.2 Detached Regime
383(1)
14.3.3 High Recycling Regime
383(1)
14.3.4 Parameter Scaling
384(1)
14.3.5 Experimental Results
385(1)
14.4 Impurity Retention
385(3)
14.5 Thermal Instability
388(3)
14.6 2D Fluid Plasma Calculation
391(2)
14.7 Drifts
393(3)
14.7.1 Basic Drifts in the SOL and Divertor
393(1)
14.7.2 Poloidal and Radial E x B Drifts
394(2)
14.8 Thermoelectric Currents
396(4)
14.8.1 Simple Current Model
396(2)
14.8.2 Relaxation of Simplifying Assumptions
398(2)
14.9 Detachment
400(2)
14.10 Effect of Drifts on Divertor and SOL Plasma Properties
402(20)
14.10.1 Geometric Model
402(1)
14.10.2 Radial Transport
403(1)
14.10.3 Temperature, Density and Velocity Distributions
404(2)
14.10.4 Electrostatic Potential
406(1)
14.10.5 Parallel Current
407(1)
14.10.6 Grad-B and Curvature Drifts
408(2)
14.10.7 Solution for Currents and Potentials at Divertor Plates
410(1)
14.10.8 E x B Drifts
411(2)
14.10.9 Total Parallel Ion Flux
413(1)
14.10.10 Impurities
413(2)
14.10.11 Geometric Invariance
415(1)
14.10.12 Model Problem Calculation: Effect of Bφ Direction on SOL-Divertor Parameters
416(6)
14.11 Blob Transport
422(3)
15 Plasma Edge
425(60)
15.1 H-Mode Edge Plasma
425(1)
15.2 Transport in the Plasma Edge
426(13)
15.2.1 Fluid Theory
426(4)
15.2.2 Multi-Fluid Theory
430(1)
15.2.3 Torque Representation
431(2)
15.2.4 Kinetic Corrections for Non-Diffusive Ion Transport
433(6)
15.3 Differences Between L-Mode and H-Mode Plasma Edges
439(4)
15.4 Effect of Recycling Neutrals
443(1)
15.5 E x B Shear Stabilization of Turbulence
444(5)
15.5.1 E x B Shear Stabilization Physics
445(2)
15.5.2 Comparison with Experiment
447(1)
15.5.3 Possible "Trigger" Mechanism for the L-H Transition
448(1)
15.6 Thermal Instabilities
449(12)
15.6.1 Temperature Perturbations in the Plasma Edge
449(4)
15.6.2 Coupled Two-Dimensional Density-Velocity-Temperature Perturbations
453(5)
15.6.3 Spontaneous Edge Pressure Pedestal Formation
458(3)
15.7 Poloidal Velocity Spin-Up
461(6)
15.7.1 Neoclassical Spin-Up
463(1)
15.7.2 Fluid Momentum Balance Calculation of Poloidal Velocity Spin-Up
463(1)
15.7.3 Poloidal Velocity Spin-Up Due to Poloidal Asymmetries
464(2)
15.7.4 Bifurcation of the Poloidal Velocity Spin-Up
466(1)
15.8 ELM Stability Limits on Edge Pressure Gradients
467(9)
15.8.1 MHD Instability Theory of Peeling Modes
468(2)
15.8.2 MHD Instability Theory of Coupled Ballooning-Peeling Modes
470(2)
15.8.3 MHD Instability Analysis of ELMs
472(4)
15.9 MARFEs
476(4)
15.10 Radiative Mantle
480(2)
15.11 Edge Operation Boundaries
482(3)
16 Neutral Particle Transport
485(64)
16.1 Fundamentals
485(8)
16.1.1 1D Boltzmann Transport Equation
485(1)
16.1.2 Legendre Polynomials
486(1)
16.1.3 Charge Exchange Model
487(1)
16.1.4 Elastic Scattering Model
488(3)
16.1.5 Recombination Model
491(1)
16.1.6 First Collision Source
491(2)
16.2 PN Transport and Diffusion Theory
493(7)
16.2.1 PN Equations
493(3)
16.2.2 Extended Diffusion Theories
496(4)
16.3 Multidimensional Neutral Transport
500(4)
16.3.1 Formulation of Transport Equation
500(2)
16.3.2 Boundary Conditions
502(1)
16.3.3 Scalar Flux and Current
502(2)
16.3.4 Partial Currents
504(1)
16.4 Integral Transport Theory
504(10)
16.4.1 Isotropic Point Source
505(1)
16.4.2 Isotropic Plane Source
506(1)
16.4.3 Anisotropic Plane Source
507(2)
16.4.4 Transmission Probabilities
509(1)
16.4.5 Escape Probabilities
509(1)
16.4.6 Inclusion of Isotropic Scattering and Charge Exchange
510(1)
16.4.7 Distributed Volumetric Sources in Arbitrary Geometry
511(1)
16.4.8 Flux from a Line Isotropic Source
511(1)
16.4.9 Bickley Functions
512(1)
16.4.10 Probability of Traveling a Distance t from a Line, Isotropic Source without a Collision
513(1)
16.5 Collision Probability Methods
514(3)
16.5.1 Reciprocity among Transmission and Collision Probabilities
514(1)
16.5.2 Collision Probabilities for Slab Geometry
515(1)
16.5.3 Collision Probabilities in Two-Dimensional Geometry
515(2)
16.6 Interface Current Balance Methods
517(8)
16.6.1 Formulation
517(1)
16.6.2 Transmission and Escape Probabilities
517(2)
16.6.3 2D Transmission/Escape Probabilities (TEP) Method
519(5)
16.6.4 1D Slab Method
524(1)
16.7 Extended Transmission-Escape Probabilities Method
525(8)
16.7.1 Basic TEP Method
525(1)
16.7.2 Anisotropic Angular Fluxes
526(2)
16.7.3 Extended Directional Escape Probabilities
528(3)
16.7.4 Average Neutral Energy Approximation
531(2)
16.8 Discrete Ordinates Methods
533(3)
16.8.1 PL and D-PL Ordinates
534(2)
16.9 Monte Carlo Methods
536(5)
16.9.1 Probability Distribution Functions
537(1)
16.9.2 Analog Simulation of Neutral Particle Transport
537(2)
16.9.3 Statistical Estimation
539(2)
16.10 Navier-Stokes Fluid Model
541(1)
16.11 Tokamak Plasma Refueling by Neutral Atom Recycling
542(7)
17 Power Balance
549(16)
17.1 Energy Confinement Time
549(5)
17.1.1 Definition
549(1)
17.1.2 Experimental Energy Confinement Times
550(1)
17.1.3 Empirical Correlations
551(3)
17.2 Radiation
554(5)
17.2.1 Radiation Fields
554(2)
17.2.2 Bremsstrahlung
556(1)
17.2.3 Cyclotron Radiation
557(2)
17.3 Impurities
559(2)
17.4 Burning Plasma Dynamics
561(4)
18 Operational Limits
565(22)
18.1 Disruptions
565(2)
18.1.1 Physics of Disruptions
565(2)
18.1.2 Causes of Disruptions
567(1)
18.2 Disruption Density Limit
567(9)
18.2.1 Radial Temperature Instabilities
569(2)
18.2.2 Spatial Averaging
571(2)
18.2.3 Coupled Radial Temperature-Density Instabilities
573(3)
18.3 Nondisruptive Density Limits
576(5)
18.3.1 MARFEs
576(1)
18.3.2 Confinement Degradation
577(3)
18.3.3 Thermal Collapse of Divertor Plasma
580(1)
18.4 Empirical Density Limit
581(1)
18.5 MHD Instability Limits
581(6)
18.5.1 β-Limits
581(3)
18.5.2 Kink Mode Limits on q(a)/q(0)
584(3)
19 Fusion Reactors and Neutron Sources
587(24)
19.1 Plasma Physics and Engineering Constraints
587(10)
19.1.1 Confinement
587(1)
19.1.2 Density Limit
588(1)
19.1.3 Beta Limit
589(1)
19.1.4 Kink Stability Limit
590(1)
19.1.5 Start-Up Inductive Volt-Seconds
590(1)
19.1.6 Noninductive Current Drive
591(1)
19.1.7 Bootstrap Current
592(1)
19.1.8 Toroidal Field Magnets
592(1)
19.1.9 Blanket and Shield
593(1)
19.1.10 Plasma Facing Component Heat Fluxes
593(3)
19.1.11 Radiation Damage to Plasma Facing Components
596(1)
19.2 International Tokamak Program
597(3)
19.3 Fusion Beyond ITER
600(3)
19.4 Fusion-Fission Hybrids?
603(8)
APPENDICES
A Frequently Used Physical Constants
611(2)
B Dimensions and Units
613(4)
C Vector Calculus
617(2)
D Curvilinear Coordinates
619(8)
E Plasma Formulas
627(2)
F Further Reading
629(4)
G Attributions
633(8)
Subject Index 641
Professor Stacey received his PhD in Nuclear Engineering from the Massachusetts Institute of Technology in 1966. He then worked in naval reactor design at Knolls Atomic Power Laboratory and led the fast reactor theory and computations and the fusion research programs at Argonne National Laboratory. In 1977, he became Callaway Professor of Nuclear Engineering at the Georgia Institute of Technology, where he has been teaching and performing research in reactor physics and plasma physics. He is the author of six books and about 250 research papers. He led the international INTOR Workshop which defined the design features and R&D needs for the first fusion experimental reactor, for which he received the US Dept. of Energy Distinguished Associate Award. Professor Stacey is a Fellow of the American Nuclear Society and of the American Physical Society and is the recipient of, among other awards, the Seaborg Award for Nuclear Research and the Wigner Reactor Physics Award from the American Nuclear Society.