|
|
1 | (22) |
|
|
1 | (6) |
|
|
7 | (3) |
|
|
10 | (7) |
|
1.4 Electromagnetic Theory |
|
|
17 | (6) |
|
2 Motion of Charged Particles |
|
|
23 | (20) |
|
2.1 Gyromotion and Drifts |
|
|
23 | (10) |
|
|
23 | (3) |
|
|
26 | (1) |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
30 | (3) |
|
2.2 Constants of the Motion |
|
|
33 | (5) |
|
|
33 | (1) |
|
2.2.2 Second Adiabatic Invariant |
|
|
34 | (2) |
|
2.2.3 Canonical Angular Momentum |
|
|
36 | (2) |
|
|
38 | (5) |
|
|
43 | (24) |
|
3.1 Confinement in Mirror Fields |
|
|
43 | (8) |
|
|
43 | (5) |
|
|
48 | (3) |
|
3.2 Closed Toroidal Confinement Systems |
|
|
51 | (16) |
|
|
51 | (4) |
|
|
55 | (2) |
|
|
57 | (4) |
|
|
61 | (6) |
|
|
67 | (20) |
|
4.1 Boltzmann and Vlasov Equations |
|
|
68 | (1) |
|
4.2 Drift Kinetic Approximation |
|
|
68 | (3) |
|
4.3 Fokker-Planck Theory of Collisions |
|
|
71 | (7) |
|
|
78 | (2) |
|
4.5 Coulomb Collisional Energy Transfer |
|
|
80 | (4) |
|
4.6 Krook Collision Operators |
|
|
84 | (3) |
|
|
87 | (18) |
|
|
87 | (4) |
|
|
91 | (4) |
|
5.3 Magnetohydrodynamic Model |
|
|
95 | (3) |
|
5.4 Anisotropic Pressure Tensor Model |
|
|
98 | (2) |
|
5.5 Strong Field, Transport Time Scale Ordering |
|
|
100 | (5) |
|
|
105 | (36) |
|
|
105 | (2) |
|
6.2 Axisymmetric Toroidal Equilibria |
|
|
107 | (6) |
|
6.3 Large Aspect Ratio Tokamak Equilibria |
|
|
113 | (6) |
|
|
119 | (3) |
|
|
122 | (3) |
|
|
125 | (2) |
|
6.7 Magnetic Field Diffusion and Flux Surface Evolution |
|
|
127 | (3) |
|
6.8 Anisotropic Pressure Equilibria |
|
|
130 | (2) |
|
|
132 | (9) |
|
|
132 | (2) |
|
6.9.2 Flux surface average |
|
|
134 | (1) |
|
6.9.3 Equivalent toroidal models |
|
|
134 | (2) |
|
6.9.4 Interpretation of thermal diffusivities from measured temperature gradients |
|
|
136 | (1) |
|
6.9.5 Prediction of poloidal distribution of conductive heat flux |
|
|
137 | (1) |
|
6.9.6 Mapping radial gradients to different poloidal locations |
|
|
138 | (3) |
|
|
141 | (24) |
|
7.1 Waves in an Unmagnetized Plasma |
|
|
141 | (3) |
|
7.1.1 Electromagnetic Waves |
|
|
141 | (2) |
|
|
143 | (1) |
|
7.2 Waves in a Uniformly Magnetized Plasma |
|
|
144 | (5) |
|
7.2.1 Electromagnetic Waves |
|
|
144 | (3) |
|
|
147 | (2) |
|
7.3 Langmuir Waves and Landau Damping |
|
|
149 | (3) |
|
7.4 Vlasov Theory of Plasma Waves |
|
|
152 | (6) |
|
|
158 | (7) |
|
|
165 | (50) |
|
8.1 Hydromagnetic Instabilities |
|
|
168 | (7) |
|
|
169 | (1) |
|
8.1.2 Chew-Goldberger-Low Theory |
|
|
170 | (2) |
|
8.1.3 Guiding Center Theory |
|
|
172 | (3) |
|
|
175 | (4) |
|
8.3 Pinch and Kink Instabilities |
|
|
179 | (4) |
|
8.4 Interchange (Flute) Instabilities |
|
|
183 | (6) |
|
8.5 Ballooning Instabilities |
|
|
189 | (4) |
|
8.6 Drift Wave Instabilities |
|
|
193 | (3) |
|
8.7 Resistive Tearing Instabilities |
|
|
196 | (6) |
|
|
196 | (1) |
|
|
197 | (2) |
|
|
199 | (1) |
|
|
200 | (2) |
|
8.8 Kinetic Instabilities |
|
|
202 | (9) |
|
8.8.1 Electrostatic Instabilities |
|
|
202 | (1) |
|
8.8.2 Collisionless Drift Waves |
|
|
203 | (2) |
|
8.8.3 Electron Temperature Gradient Instabilities |
|
|
205 | (1) |
|
8.8.4 Ion Temperature Gradient Instabilities |
|
|
206 | (1) |
|
8.8.5 Loss-Cone and Drift-Cone Instabilities |
|
|
207 | (4) |
|
8.9 Sawtooth Oscillations |
|
|
211 | (4) |
|
|
215 | (48) |
|
9.1 Collisional Transport Mechanisms |
|
|
215 | (7) |
|
|
215 | (2) |
|
|
217 | (1) |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
220 | (2) |
|
|
222 | (3) |
|
9.3 Neoclassical Transport - Toroidal Effects in Fluid Theory |
|
|
225 | (6) |
|
9.4 Multifluid Transport Formalism |
|
|
231 | (3) |
|
9.5 Closure of Fluid Transport Equations |
|
|
234 | (7) |
|
9.5.1 Kinetic Equations for Ion-Electron Plasma |
|
|
234 | (4) |
|
9.5.2 Transport Parameters |
|
|
238 | (3) |
|
9.6 Neoclassical Transport-Trapped Particles |
|
|
241 | (6) |
|
9.7 Extended Neoclassical Transport - Fluid Theory |
|
|
247 | (4) |
|
9.7.1 Radial Electric Field |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (2) |
|
|
251 | (2) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
253 | (3) |
|
9.9.1 Toroidal Electric Field - Ware Pinch |
|
|
253 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
9.10 Neoclassical Ion Thermal Diffusivity |
|
|
256 | (2) |
|
9.11 Paleoclassical Electron Thermal Diffusivity |
|
|
258 | (1) |
|
9.12 Transport in a Partially Ionized Gas |
|
|
259 | (4) |
|
|
263 | (30) |
|
10.1 Neoclassical Viscosity |
|
|
263 | (9) |
|
10.1.1 Rate-of-Strain Tensor in Toroidal Geometry |
|
|
263 | (1) |
|
10.1.2 Viscous Stress Tensor |
|
|
264 | (1) |
|
10.1.3 Toroidal Viscous Force |
|
|
265 | (4) |
|
10.1.4 Parallel Viscous Force |
|
|
269 | (1) |
|
10.1.5 Neoclassical Viscosity Coefficients |
|
|
270 | (2) |
|
10.2 Rotation Calculations |
|
|
272 | (9) |
|
10.2.1 Poloidal Rotation and Density Asymmetries |
|
|
272 | (3) |
|
10.2.2 Shaing-Sigmar-Stacey Parallel Viscosity Model |
|
|
275 | (1) |
|
10.2.3 Stacey-Sigmar Poloidal Rotation Model |
|
|
276 | (4) |
|
10.2.4 Radial Electric Field and Toroidal Rotation Velocities |
|
|
280 | (1) |
|
10.3 Momentum Confinement Times |
|
|
281 | (2) |
|
|
281 | (1) |
|
|
282 | (1) |
|
10.4 Rotation and Transport in Elongated Geometry |
|
|
283 | (10) |
|
10.4.1 Flux surface coordinate system |
|
|
283 | (2) |
|
10.4.2 Flux surface average |
|
|
285 | (1) |
|
10.4.3 Differential Operators in Generalized Geometry |
|
|
285 | (1) |
|
10.4.4 Fluid Equations in Miller Elongated Flux Surface Coordinates |
|
|
286 | (7) |
|
|
293 | (30) |
|
11.1 Electrostatic Drift Waves |
|
|
293 | (6) |
|
|
293 | (3) |
|
11.1.2 Ion Temperature Gradient Drift Waves |
|
|
296 | (1) |
|
11.1.3 Quasilinear Transport Analysis |
|
|
296 | (2) |
|
11.1.4 Saturated Fluctuation Levels |
|
|
298 | (1) |
|
11.2 Magnetic Fluctuations |
|
|
299 | (2) |
|
11.3 Wave-Wave Interactions |
|
|
301 | (3) |
|
|
301 | (1) |
|
11.3.2 Direct Interaction Approximation |
|
|
302 | (2) |
|
11.4 Drift Wave Eigenmodes |
|
|
304 | (2) |
|
11.5 Microinstability thermal diffusivity models |
|
|
306 | (9) |
|
|
307 | (5) |
|
11.5.2 Electron transport |
|
|
312 | (3) |
|
11.6 Gyrokinetic and Gyrofiuid Theory |
|
|
315 | (6) |
|
11.6.1 Gyrokinetic Theory of Turbulent Transport |
|
|
316 | (2) |
|
11.6.2 Gyrofiuid Theory of Turbulent Transport |
|
|
318 | (3) |
|
|
321 | (2) |
|
12 Heating and Current Drive |
|
|
323 | (32) |
|
|
323 | (3) |
|
12.2 Adiabatic Compression |
|
|
326 | (3) |
|
|
329 | (10) |
|
12.3.1 Neutral Beam Injection |
|
|
329 | (2) |
|
12.3.2 Fast Ion Energy Loss |
|
|
331 | (3) |
|
12.3.3 Fast Ion Distribution |
|
|
334 | (2) |
|
12.3.4 Neutral Beam Current Drive |
|
|
336 | (1) |
|
12.3.5 Toroidal Alfven Instabilities |
|
|
337 | (2) |
|
12.4 Electromagnetic Waves |
|
|
339 | (16) |
|
|
339 | (3) |
|
12.4.2 Wave Heating Physics |
|
|
342 | (4) |
|
12.4.3 Ion Cyclotron Resonance Heating |
|
|
346 | (1) |
|
12.4.4 Lower Hybrid Resonance Heating |
|
|
347 | (1) |
|
12.4.5 Electron Cyclotron Resonance Heating |
|
|
348 | (1) |
|
|
349 | (6) |
|
13 Plasma-Material Interaction |
|
|
355 | (18) |
|
|
355 | (3) |
|
|
358 | (1) |
|
13.3 Atomic and Molecular Processes |
|
|
359 | (5) |
|
13.4 Penetration of Recycling Neutrals |
|
|
364 | (1) |
|
|
365 | (2) |
|
|
367 | (6) |
|
|
373 | (52) |
|
14.1 Configuration, Nomenclature and Physical Processes |
|
|
373 | (3) |
|
14.2 Simple Divertor Model |
|
|
376 | (6) |
|
|
376 | (1) |
|
14.2.2 Radial Transport and Widths |
|
|
376 | (2) |
|
14.2.3 Parallel Transport |
|
|
378 | (1) |
|
14.2.4 Solution of Plasma Equations |
|
|
379 | (1) |
|
|
380 | (2) |
|
14.3 Divertor Operating Regimes |
|
|
382 | (3) |
|
14.3.1 Sheath-Limited Regime |
|
|
382 | (1) |
|
|
383 | (1) |
|
14.3.3 High Recycling Regime |
|
|
383 | (1) |
|
|
384 | (1) |
|
14.3.5 Experimental Results |
|
|
385 | (1) |
|
|
385 | (3) |
|
|
388 | (3) |
|
14.6 2D Fluid Plasma Calculation |
|
|
391 | (2) |
|
|
393 | (3) |
|
14.7.1 Basic Drifts in the SOL and Divertor |
|
|
393 | (1) |
|
14.7.2 Poloidal and Radial E x B Drifts |
|
|
394 | (2) |
|
14.8 Thermoelectric Currents |
|
|
396 | (4) |
|
14.8.1 Simple Current Model |
|
|
396 | (2) |
|
14.8.2 Relaxation of Simplifying Assumptions |
|
|
398 | (2) |
|
|
400 | (2) |
|
14.10 Effect of Drifts on Divertor and SOL Plasma Properties |
|
|
402 | (20) |
|
|
402 | (1) |
|
|
403 | (1) |
|
14.10.3 Temperature, Density and Velocity Distributions |
|
|
404 | (2) |
|
14.10.4 Electrostatic Potential |
|
|
406 | (1) |
|
|
407 | (1) |
|
14.10.6 Grad-B and Curvature Drifts |
|
|
408 | (2) |
|
14.10.7 Solution for Currents and Potentials at Divertor Plates |
|
|
410 | (1) |
|
|
411 | (2) |
|
14.10.9 Total Parallel Ion Flux |
|
|
413 | (1) |
|
|
413 | (2) |
|
14.10.11 Geometric Invariance |
|
|
415 | (1) |
|
14.10.12 Model Problem Calculation: Effect of Bφ Direction on SOL-Divertor Parameters |
|
|
416 | (6) |
|
|
422 | (3) |
|
|
425 | (60) |
|
|
425 | (1) |
|
15.2 Transport in the Plasma Edge |
|
|
426 | (13) |
|
|
426 | (4) |
|
15.2.2 Multi-Fluid Theory |
|
|
430 | (1) |
|
15.2.3 Torque Representation |
|
|
431 | (2) |
|
15.2.4 Kinetic Corrections for Non-Diffusive Ion Transport |
|
|
433 | (6) |
|
15.3 Differences Between L-Mode and H-Mode Plasma Edges |
|
|
439 | (4) |
|
15.4 Effect of Recycling Neutrals |
|
|
443 | (1) |
|
15.5 E x B Shear Stabilization of Turbulence |
|
|
444 | (5) |
|
15.5.1 E x B Shear Stabilization Physics |
|
|
445 | (2) |
|
15.5.2 Comparison with Experiment |
|
|
447 | (1) |
|
15.5.3 Possible "Trigger" Mechanism for the L-H Transition |
|
|
448 | (1) |
|
15.6 Thermal Instabilities |
|
|
449 | (12) |
|
15.6.1 Temperature Perturbations in the Plasma Edge |
|
|
449 | (4) |
|
15.6.2 Coupled Two-Dimensional Density-Velocity-Temperature Perturbations |
|
|
453 | (5) |
|
15.6.3 Spontaneous Edge Pressure Pedestal Formation |
|
|
458 | (3) |
|
15.7 Poloidal Velocity Spin-Up |
|
|
461 | (6) |
|
15.7.1 Neoclassical Spin-Up |
|
|
463 | (1) |
|
15.7.2 Fluid Momentum Balance Calculation of Poloidal Velocity Spin-Up |
|
|
463 | (1) |
|
15.7.3 Poloidal Velocity Spin-Up Due to Poloidal Asymmetries |
|
|
464 | (2) |
|
15.7.4 Bifurcation of the Poloidal Velocity Spin-Up |
|
|
466 | (1) |
|
15.8 ELM Stability Limits on Edge Pressure Gradients |
|
|
467 | (9) |
|
15.8.1 MHD Instability Theory of Peeling Modes |
|
|
468 | (2) |
|
15.8.2 MHD Instability Theory of Coupled Ballooning-Peeling Modes |
|
|
470 | (2) |
|
15.8.3 MHD Instability Analysis of ELMs |
|
|
472 | (4) |
|
|
476 | (4) |
|
|
480 | (2) |
|
15.11 Edge Operation Boundaries |
|
|
482 | (3) |
|
16 Neutral Particle Transport |
|
|
485 | (64) |
|
|
485 | (8) |
|
16.1.1 1D Boltzmann Transport Equation |
|
|
485 | (1) |
|
16.1.2 Legendre Polynomials |
|
|
486 | (1) |
|
16.1.3 Charge Exchange Model |
|
|
487 | (1) |
|
16.1.4 Elastic Scattering Model |
|
|
488 | (3) |
|
16.1.5 Recombination Model |
|
|
491 | (1) |
|
16.1.6 First Collision Source |
|
|
491 | (2) |
|
16.2 PN Transport and Diffusion Theory |
|
|
493 | (7) |
|
|
493 | (3) |
|
16.2.2 Extended Diffusion Theories |
|
|
496 | (4) |
|
16.3 Multidimensional Neutral Transport |
|
|
500 | (4) |
|
16.3.1 Formulation of Transport Equation |
|
|
500 | (2) |
|
16.3.2 Boundary Conditions |
|
|
502 | (1) |
|
16.3.3 Scalar Flux and Current |
|
|
502 | (2) |
|
|
504 | (1) |
|
16.4 Integral Transport Theory |
|
|
504 | (10) |
|
16.4.1 Isotropic Point Source |
|
|
505 | (1) |
|
16.4.2 Isotropic Plane Source |
|
|
506 | (1) |
|
16.4.3 Anisotropic Plane Source |
|
|
507 | (2) |
|
16.4.4 Transmission Probabilities |
|
|
509 | (1) |
|
16.4.5 Escape Probabilities |
|
|
509 | (1) |
|
16.4.6 Inclusion of Isotropic Scattering and Charge Exchange |
|
|
510 | (1) |
|
16.4.7 Distributed Volumetric Sources in Arbitrary Geometry |
|
|
511 | (1) |
|
16.4.8 Flux from a Line Isotropic Source |
|
|
511 | (1) |
|
|
512 | (1) |
|
16.4.10 Probability of Traveling a Distance t from a Line, Isotropic Source without a Collision |
|
|
513 | (1) |
|
16.5 Collision Probability Methods |
|
|
514 | (3) |
|
16.5.1 Reciprocity among Transmission and Collision Probabilities |
|
|
514 | (1) |
|
16.5.2 Collision Probabilities for Slab Geometry |
|
|
515 | (1) |
|
16.5.3 Collision Probabilities in Two-Dimensional Geometry |
|
|
515 | (2) |
|
16.6 Interface Current Balance Methods |
|
|
517 | (8) |
|
|
517 | (1) |
|
16.6.2 Transmission and Escape Probabilities |
|
|
517 | (2) |
|
16.6.3 2D Transmission/Escape Probabilities (TEP) Method |
|
|
519 | (5) |
|
|
524 | (1) |
|
16.7 Extended Transmission-Escape Probabilities Method |
|
|
525 | (8) |
|
|
525 | (1) |
|
16.7.2 Anisotropic Angular Fluxes |
|
|
526 | (2) |
|
16.7.3 Extended Directional Escape Probabilities |
|
|
528 | (3) |
|
16.7.4 Average Neutral Energy Approximation |
|
|
531 | (2) |
|
16.8 Discrete Ordinates Methods |
|
|
533 | (3) |
|
16.8.1 PL and D-PL Ordinates |
|
|
534 | (2) |
|
|
536 | (5) |
|
16.9.1 Probability Distribution Functions |
|
|
537 | (1) |
|
16.9.2 Analog Simulation of Neutral Particle Transport |
|
|
537 | (2) |
|
16.9.3 Statistical Estimation |
|
|
539 | (2) |
|
16.10 Navier-Stokes Fluid Model |
|
|
541 | (1) |
|
16.11 Tokamak Plasma Refueling by Neutral Atom Recycling |
|
|
542 | (7) |
|
|
549 | (16) |
|
17.1 Energy Confinement Time |
|
|
549 | (5) |
|
|
549 | (1) |
|
17.1.2 Experimental Energy Confinement Times |
|
|
550 | (1) |
|
17.1.3 Empirical Correlations |
|
|
551 | (3) |
|
|
554 | (5) |
|
|
554 | (2) |
|
|
556 | (1) |
|
17.2.3 Cyclotron Radiation |
|
|
557 | (2) |
|
|
559 | (2) |
|
17.4 Burning Plasma Dynamics |
|
|
561 | (4) |
|
|
565 | (22) |
|
|
565 | (2) |
|
18.1.1 Physics of Disruptions |
|
|
565 | (2) |
|
18.1.2 Causes of Disruptions |
|
|
567 | (1) |
|
18.2 Disruption Density Limit |
|
|
567 | (9) |
|
18.2.1 Radial Temperature Instabilities |
|
|
569 | (2) |
|
|
571 | (2) |
|
18.2.3 Coupled Radial Temperature-Density Instabilities |
|
|
573 | (3) |
|
18.3 Nondisruptive Density Limits |
|
|
576 | (5) |
|
|
576 | (1) |
|
18.3.2 Confinement Degradation |
|
|
577 | (3) |
|
18.3.3 Thermal Collapse of Divertor Plasma |
|
|
580 | (1) |
|
18.4 Empirical Density Limit |
|
|
581 | (1) |
|
18.5 MHD Instability Limits |
|
|
581 | (6) |
|
|
581 | (3) |
|
18.5.2 Kink Mode Limits on q(a)/q(0) |
|
|
584 | (3) |
|
19 Fusion Reactors and Neutron Sources |
|
|
587 | (24) |
|
19.1 Plasma Physics and Engineering Constraints |
|
|
587 | (10) |
|
|
587 | (1) |
|
|
588 | (1) |
|
|
589 | (1) |
|
19.1.4 Kink Stability Limit |
|
|
590 | (1) |
|
19.1.5 Start-Up Inductive Volt-Seconds |
|
|
590 | (1) |
|
19.1.6 Noninductive Current Drive |
|
|
591 | (1) |
|
|
592 | (1) |
|
19.1.8 Toroidal Field Magnets |
|
|
592 | (1) |
|
19.1.9 Blanket and Shield |
|
|
593 | (1) |
|
19.1.10 Plasma Facing Component Heat Fluxes |
|
|
593 | (3) |
|
19.1.11 Radiation Damage to Plasma Facing Components |
|
|
596 | (1) |
|
19.2 International Tokamak Program |
|
|
597 | (3) |
|
|
600 | (3) |
|
19.4 Fusion-Fission Hybrids? |
|
|
603 | (8) |
|
|
|
A Frequently Used Physical Constants |
|
|
611 | (2) |
|
|
613 | (4) |
|
|
617 | (2) |
|
D Curvilinear Coordinates |
|
|
619 | (8) |
|
|
627 | (2) |
|
|
629 | (4) |
|
|
633 | (8) |
Subject Index |
|
641 | |