Muutke küpsiste eelistusi

E-raamat: Gaseous Radiation Detectors: Fundamentals and Applications

(Organisation Européenne pour la Recherche Nucléaire (CERN), Geneva)
  • Formaat - EPUB+DRM
  • Hind: 112,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Reviewing the major developments in the design and operation of gaseous radiation detectors, this book provides a detailed understanding of the various processes involved in detection. Including examples of applications, it is a valuable reference for researchers and experimentalists in nuclear and particle physics.

Widely used in high-energy and particle physics, gaseous radiation detectors are undergoing continuous development. The first part of this book provides a solid background for understanding the basic processes leading to the detection and tracking of charged particles, photons, and neutrons. Continuing then with the development of the multi-wire proportional chamber, the book describes the design and operation of successive generations of gas-based radiation detectors, as well as their use in experimental physics and other fields. Examples are provided of applications for complex events tracking, particle identification, and neutral radiation imaging. Limitations of the devices are discussed in detail. Including an extensive collection of data and references, this book is ideal for researchers and experimentalists in nuclear and particle physics.

Muu info

Describes the fundamentals and applications of gaseous radiation detection, ideal for researchers and experimentalists in nuclear and particle physics.
Acronyms ix
Preface xiii
1 Introduction
1(23)
1.1 Historical background
1(3)
1.2 Gaseous detectors: a personal recollection
4(16)
1.3 Basic processes in gaseous counters
20(3)
1.4 Outline of the book
23(1)
2 Electromagnetic interactions of charged particles with matter
24(19)
2.1 Generalities on the energy loss process
24(4)
2.2 The Bethe-Bloch energy loss expression
28(1)
2.3 Energy loss statistics
29(11)
2.4 Delta electron range
40(3)
3 Interaction of photons and neutrons with matter
43(33)
3.1 Photon absorption and emission in gases
43(1)
3.2 Photon absorption: definitions and units
44(2)
3.3 Photon absorption processes: generalities
46(3)
3.4 Photon absorption in gases: from the visible to the near ultra-violet domain
49(4)
3.5 Photo-ionization: near and vacuum ultra-violet
53(3)
3.6 Photo-ionization in the X-ray region
56(6)
3.7 Compton scattering and pair production
62(1)
3.8 Use of converters for hard photons detection
63(4)
3.9 Transparency of windows
67(1)
3.10 Detection of neutrons
68(8)
4 Drift and diffusion of charges in gases
76(53)
4.1 Generalities
76(1)
4.2 Experimental methods
76(4)
4.3 Thermal diffusion of ions
80(2)
4.4 Ion mobility and diffusion in an electric field
82(5)
4.5 Classic theory of electron drift and diffusion
87(3)
4.6 Electron drift in magnetic fields
90(1)
4.7 Electron drift velocity and diffusion: experimental
91(15)
4.8 Electron capture
106(6)
4.9 Electron drift in liquid noble gases
112(2)
4.10 Transport theory
114(15)
5 Collisional excitations and charge multiplication in uniform fields
129(31)
5.1 Inelastic electron-molecule collisions
129(1)
5.2 Excitations and photon emission
130(13)
5.3 Ionization and charge multiplication
143(6)
5.4 Avalanche statistics
149(4)
5.5 Streamer formation and breakdown
153(7)
6 Parallel plate counters
160(22)
6.1 Charge induction on conductors
160(1)
6.2 Signals induced by the motion of charges in uniform fields
161(4)
6.3 Analytical calculation of charge induction
165(7)
6.4 Signals induced by the avalanche process
172(3)
6.5 Grid transparency
175(2)
6.6 Applications of parallel plate avalanche counters (PPACs)
177(5)
7 Proportional counters
182(29)
7.1 Basic principles
182(6)
7.2 Absolute gain measurement
188(1)
7.3 Time development of the signal
188(3)
7.4 Choice of the gas filling
191(3)
7.5 Energy resolution
194(4)
7.6 Scintillation proportional counters
198(3)
7.7 Space-charge gain shifts
201(5)
7.8 Geiger and self-quenching streamer operation
206(1)
7.9 Radiation damage and detector ageing
207(4)
8 Multi-wire proportional chambers
211(53)
8.1 Principles of operation
211(4)
8.2 Choice of geometrical parameters
215(1)
8.3 Influence on gain of mechanical tolerances
216(2)
8.4 Electrostatic forces and wire stability
218(3)
8.5 General operational characteristics: proportional and semi-proportional
221(5)
8.6 Saturated amplification region: Charpak's 'magic gas'
226(4)
8.7 Limited streamer and full Geiger operation
230(1)
8.8 Discharges and breakdown: the Raether limit
231(3)
8.9 Cathode induced signals
234(11)
8.10 The multi-step chamber (MSC)
245(4)
8.11 Space charge and rate effects
249(3)
8.12 Mechanical construction of MWPCs
252(12)
9 Drift chambers
264(28)
9.1 Single wire drift chambers
264(1)
9.2 Multi-cell planar drift chambers
265(10)
9.3 Volume multi-wire drift chambers
275(5)
9.4 Jet chambers
280(2)
9.5 Time expansion chamber
282(2)
9.6 Determination of the longitudinal coordinate from current division
284(3)
9.7 Electrodeless drift chambers
287(3)
9.8 General operating considerations
290(1)
9.9 Drift chamber construction
290(2)
10 Time projection chambers
292(35)
10.1 Introduction: the precursors
292(1)
10.2 Principles of operation
293(4)
10.3 TPC-based experiments
297(4)
10.4 Signal induction: the pad response function
301(11)
10.5 Choice of the gas filling
312(3)
10.6 Coordinate in the drift direction and multi-track resolution
315(3)
10.7 Positive ion backflow and gating
318(5)
10.8 TPC calibration
323(1)
10.9 Liquid noble gas TPC
324(1)
10.10 Negative ion TPC
325(2)
11 Multi-tube arrays
327(17)
11.1 Limited streamer tubes
327(2)
11.2 Drift tubes
329(6)
11.3 Straw tubes
335(5)
11.4 Mechanical construction and electrostatic stability
340(4)
12 Resistive plate chambers
344(21)
12.1 Spark counters
344(2)
12.2 Resistive plate counters (RPCs)
346(7)
12.3 Glass RPCs
353(2)
12.4 Multi-gap RPCs
355(5)
12.5 Simulations of RPC operation
360(5)
13 Micro-pattern gaseous detectors
365(34)
13.1 The micro-strip gas counter
365(8)
13.2 Novel micro-pattern devices
373(5)
13.3 Micro-mesh gaseous structure (Micromegas)
378(5)
13.4 Gas electron multiplier (GEM)
383(9)
13.5 MPGD readout of time projection chambers
392(3)
13.6 Active pixel readout
395(3)
13.7 MPGD applications
398(1)
14 Cherenkov ring imaging
399(31)
14.1 Introduction
399(4)
14.2 Recalls of Cherenkov ring imaging theory
403(4)
14.3 First generation RICH detectors
407(3)
14.4 TMAE and the second generation of RICH detectors
410(7)
14.5 Third generation RICH: solid caesium iodide (CsI) photocathodes
417(6)
14.6 CsI-based RICH particle identifiers
423(1)
14.7 Micro-pattern based RICH detectors
424(6)
15 Miscellaneous detectors and applications
430(11)
15.1 Optical imaging chambers
430(4)
15.2 Cryogenic and dual-phase detectors
434(7)
16 Time degeneracy and ageing
441(19)
16.1 Early observations
441(2)
16.2 Phenomenology of the radiation damages
443(6)
16.3 Quantitative assessment of the ageing rates
449(2)
16.4 Methods of preventing or slowing down the ageing process
451(4)
16.5 Ageing of resistive plate chambers
455(2)
16.6 Micro-pattern detectors
457(3)
Further reading on radiation detectors 460(1)
References 461(33)
Index 494
Fabio Sauli is Research Associate for the Italian TERA Foundation, responsible for the development of medical diagnostic instrumentation for hadrontherapy. Prior to this, he was part of the Research Staff at CERN in the Gas Detectors Development group, initiated by Georges Charpak, before leading the group from 1989 until his retirement in 2006. He has more than 200 scientific publications and is an editor of several books on instrumentation in high energy physics. His achievements include inventing the Gas Electron Multiplier (GEM), which is widely used in advanced detectors.