Muutke küpsiste eelistusi

General Parabolic Mixed Order Systems in Lp and Applications 2013 ed. [Kõva köide]

  • Formaat: Hardback, 250 pages, kõrgus x laius: 235x155 mm, kaal: 5148 g, 1 Illustrations, color; 15 Illustrations, black and white; VIII, 250 p. 16 illus., 1 illus. in color., 1 Hardback
  • Sari: Operator Theory: Advances and Applications 239
  • Ilmumisaeg: 10-Dec-2013
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319019996
  • ISBN-13: 9783319019994
Teised raamatud teemal:
  • Kõva köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 250 pages, kõrgus x laius: 235x155 mm, kaal: 5148 g, 1 Illustrations, color; 15 Illustrations, black and white; VIII, 250 p. 16 illus., 1 illus. in color., 1 Hardback
  • Sari: Operator Theory: Advances and Applications 239
  • Ilmumisaeg: 10-Dec-2013
  • Kirjastus: Birkhauser Verlag AG
  • ISBN-10: 3319019996
  • ISBN-13: 9783319019994
Teised raamatud teemal:
In this text, a theory for general linear parabolic partial differential equations is established which covers equations with inhomogeneous symbol structure as well as mixed-order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity) which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations which are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel–Lizorkin spaces. The last-mentioned class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier–Stokes equations with Boussinesq–Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs–Thomson correction.?

This text establishes a theory for general linear parabolic partial differential equations that covers equations with inhomogeneous symbol structure as well as mixed-order systems.
Introduction and Outline 1(10)
1 The joint time-space H∞-calculus
11(58)
1.1 The joint H∞-calculus for tuples of operators
12(15)
a) Sectorial and bisectorial operators, R-boundedness
12(5)
b) Joint H∞-calculus
17(10)
1.2 Vector-valued Sobolev spaces
27(18)
a) Interpolation of Banach spaces
27(7)
b) Retractions and coretractions
34(2)
c) Definition of Sobolev spaces
36(9)
1.3 The time-space derivative
45(24)
a) Fourier multipliers
45(7)
b) Vector-valued space and time derivatives
52(6)
c) Joint space-time H∞-calculus
58(11)
2 The Newton polygon approach for mixed-order systems
69(74)
2.1 Inhomogeneous symbols and the Newton polygon
70(21)
a) Inhomogeneous symbols and principal parts
71(6)
b) Newton polygons and order functions
77(14)
2.2 N-parameter-ellipticity and N-parabolicity
91(23)
a) N-parameter-elliptic symbols and SN(Lt x Lx)
92(2)
b) Partition of the co-variable space
94(4)
c) Equivalent characterization of SN(Lt x Lx)
98(16)
2.3 H∞-calculus of N-parabolic mixed-order systems
114(29)
a) The H∞-calculus of N-parabolic symbols
115(8)
b) Mixed-order systems on spaces of mixed scales
123(9)
c) Remarks on the compatibility condition
132(11)
3 Triebel-Lizorkin spaces and the Lp-Lq-setting
143(44)
3.1 Vector-valued Triebel-Lizorkin spaces and interpolation
144(7)
3.2 Anisotropic Triebel-Lizorkin spaces and representation by intersections
151(9)
3.3 Auxiliary results on Bessel-valued Triebel-Lizorkin spaces
160(6)
a) The joint time-space H∞-calculus on Bessel-valued Triebel-Lizorkin spaces
161(3)
b) H∞-calculus of N-parabolic symbols on Bessel-valued Triebel-Lizorkin spaces
164(2)
3.4 Mixed-order systems on Triebel-Lizorkin spaces
166(7)
3.5 Singular integral operators on Lp-Lq
173(14)
a) Singular integral operators
173(6)
b) Extension symbols
179(8)
4 Application to parabolic differential equations
187(42)
4.1 The generalized Lp-Lq Stokes problem on Ω = Rn
188(8)
a) Remarks on homogeneous Sobolev spaces
188(2)
b) The generalized Stokes problem
190(6)
4.2 The generalized Lp-Lq thermo-elastic plate equations on Ω = Rn
196(3)
4.3 A linear Lp-Lq Cahn-Hilliard-Gurtin problem in Ω = Rn
199(3)
4.4 A compressible fluid model of Korteweg type on Ω = Rn
202(3)
4.5 A linear three-phase problem on Ω = Rn
205(2)
4.6 The spin-coating process
207(7)
4.7 Two-phase Navier-Stokes equations with Boussinesq-Scriven surface and gravity
214(11)
4.8 The Lp-Lq two-phase Stefan problem with Gibbs-Thomson correction
225(4)
List of Figures 229(2)
Bibliography 231(8)
List of symbols 239(8)
Index 247