|
1 Traffic Sign Detection and Recognition |
|
|
1 | (14) |
|
|
1 | (1) |
|
|
2 | (3) |
|
|
5 | (7) |
|
|
5 | (1) |
|
1.3.2 Hand-Crafted Features |
|
|
5 | (2) |
|
|
7 | (3) |
|
|
10 | (2) |
|
|
12 | (3) |
|
|
12 | (3) |
|
|
15 | (70) |
|
|
16 | (4) |
|
|
17 | (3) |
|
|
20 | (21) |
|
2.2.1 Training a Linear Classifier |
|
|
22 | (8) |
|
|
30 | (4) |
|
2.2.3 Logistic Regression |
|
|
34 | (3) |
|
2.2.4 Comparing Loss Function |
|
|
37 | (4) |
|
2.3 Multiclass Classification |
|
|
41 | (10) |
|
|
41 | (3) |
|
|
44 | (2) |
|
2.3.3 Multiclass Hinge Loss |
|
|
46 | (2) |
|
2.3.4 Multinomial Logistic Function |
|
|
48 | (3) |
|
|
51 | (7) |
|
|
58 | (3) |
|
2.6 Artificial Neural Networks |
|
|
61 | (20) |
|
|
65 | (6) |
|
2.6.2 Activation Functions |
|
|
71 | (7) |
|
|
78 | (1) |
|
|
79 | (1) |
|
2.6.5 How to Apply on Images |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
82 | (3) |
|
|
83 | (2) |
|
3 Convolutional Neural Networks |
|
|
85 | (46) |
|
3.1 Deriving Convolution from a Fully Connected Layer |
|
|
85 | (10) |
|
3.1.1 Role of Convolution |
|
|
90 | (2) |
|
3.1.2 Backpropagation of Convolution Layers |
|
|
92 | (2) |
|
3.1.3 Stride in Convolution |
|
|
94 | (1) |
|
|
95 | (3) |
|
3.2.1 Backpropagation in Pooling Layer |
|
|
97 | (1) |
|
|
98 | (2) |
|
|
100 | (1) |
|
|
101 | (10) |
|
3.5.1 ConvNet Architecture |
|
|
102 | (1) |
|
|
103 | (2) |
|
3.5.3 Evaluating a ConvNet |
|
|
105 | (6) |
|
|
111 | (13) |
|
|
112 | (1) |
|
|
113 | (2) |
|
|
115 | (6) |
|
3.6.4 Learning Rate Annealing |
|
|
121 | (3) |
|
3.7 Analyzing Quantitative Results |
|
|
124 | (2) |
|
3.8 Other Types of Layers |
|
|
126 | (2) |
|
3.8.1 Local Response Normalization |
|
|
126 | (1) |
|
3.8.2 Spatial Pyramid Pooling |
|
|
127 | (1) |
|
|
127 | (1) |
|
3.8.4 Batch Normalization |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (3) |
|
|
129 | (2) |
|
|
131 | (36) |
|
|
131 | (1) |
|
|
132 | (1) |
|
4.3 Designing Using Text Files |
|
|
132 | (20) |
|
|
137 | (2) |
|
|
139 | (2) |
|
4.3.3 Initializing Parameters |
|
|
141 | (1) |
|
|
142 | (2) |
|
|
144 | (1) |
|
4.3.6 Fully Connected Layer |
|
|
145 | (1) |
|
|
146 | (1) |
|
4.3.8 Classification and Loss Layers |
|
|
146 | (6) |
|
|
152 | (2) |
|
|
154 | (3) |
|
4.6 Drawing Architecture of Network |
|
|
157 | (1) |
|
4.7 Training Using Python |
|
|
157 | (1) |
|
4.8 Evaluating Using Python |
|
|
158 | (3) |
|
4.9 Save and Restore Networks |
|
|
161 | (1) |
|
4.10 Python Layer in Caffe |
|
|
162 | (2) |
|
|
164 | (1) |
|
|
164 | (3) |
|
|
166 | (1) |
|
5 Classification of Traffic Signs |
|
|
167 | (68) |
|
|
167 | (2) |
|
|
169 | (4) |
|
|
170 | (1) |
|
5.2.2 Hand-Crafted Features |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (15) |
|
|
174 | (3) |
|
|
177 | (8) |
|
5.3.3 Static Versus One-the-Fly Augmenting |
|
|
185 | (1) |
|
|
185 | (2) |
|
5.3.5 Preparing the GTSRB Dataset |
|
|
187 | (1) |
|
5.4 Analyzing Training/Validation Curves |
|
|
188 | (1) |
|
5.5 ConvNets for Classification of Traffic Signs |
|
|
189 | (10) |
|
|
199 | (4) |
|
|
200 | (1) |
|
5.6.2 Training Different Models |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (14) |
|
5.7.1 Misclassified Images |
|
|
208 | (1) |
|
5.7.2 Cross-Dataset Analysis and Transfer Learning |
|
|
209 | (5) |
|
5.7.3 Stability of ConvNet |
|
|
214 | (3) |
|
5.7.4 Analyzing by Visualization |
|
|
217 | (1) |
|
5.8 Analyzing by Visualizing |
|
|
217 | (5) |
|
5.8.1 Visualizing Sensitivity |
|
|
218 | (1) |
|
5.8.2 Visualizing the Minimum Perception |
|
|
219 | (1) |
|
5.8.3 Visualizing Activations |
|
|
220 | (2) |
|
5.9 More Accurate ConvNet |
|
|
222 | (8) |
|
|
224 | (2) |
|
5.9.2 Stability Against Noise |
|
|
226 | (3) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (4) |
|
|
232 | (3) |
|
6 Detecting Traffic Signs |
|
|
235 | (12) |
|
|
235 | (1) |
|
6.2 ConvNet for Detecting Traffic Signs |
|
|
236 | (3) |
|
6.3 Implementing Sliding Window Within the ConvNet |
|
|
239 | (4) |
|
|
243 | (3) |
|
|
246 | (1) |
|
|
246 | (1) |
|
|
246 | (1) |
|
7 Visualizing Neural Networks |
|
|
247 | (12) |
|
|
247 | (1) |
|
7.2 Data-Oriented Techniques |
|
|
248 | (1) |
|
7.2.1 Tracking Activation |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
7.3 Gradient-Based Techniques |
|
|
249 | (5) |
|
7.3.1 Activation Maximization |
|
|
250 | (3) |
|
7.3.2 Activation Saliency |
|
|
253 | (1) |
|
7.4 Inverting Representation |
|
|
254 | (3) |
|
|
257 | (1) |
|
|
257 | (2) |
|
|
258 | (1) |
Appendix A Gradient Descend |
|
259 | (16) |
Glossary |
|
275 | (4) |
Index |
|
279 | |