Muutke küpsiste eelistusi

Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification Softcover reprint of the original 1st ed. 2017 [Pehme köide]

  • Formaat: Paperback / softback, 282 pages, kõrgus x laius: 235x155 mm, kaal: 638 g, 111 Illustrations, color; 39 Illustrations, black and white; XXIII, 282 p. 150 illus., 111 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 02-Aug-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319861905
  • ISBN-13: 9783319861906
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 282 pages, kõrgus x laius: 235x155 mm, kaal: 638 g, 111 Illustrations, color; 39 Illustrations, black and white; XXIII, 282 p. 150 illus., 111 illus. in color., 1 Paperback / softback
  • Ilmumisaeg: 02-Aug-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319861905
  • ISBN-13: 9783319861906
This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification.

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.

Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.

This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

1 Traffic Sign Detection and Recognition
1(14)
1.1 Introduction
1(1)
1.2 Challenges
2(3)
1.3 Previous Work
5(7)
1.3.1 Template Matching
5(1)
1.3.2 Hand-Crafted Features
5(2)
1.3.3 Feature Learning
7(3)
1.3.4 ConvNets
10(2)
1.4 Summary
12(3)
References
12(3)
2 Pattern Classification
15(70)
2.1 Formulation
16(4)
2.1.1 K-Nearest Neighbor
17(3)
2.2 Linear Classifier
20(21)
2.2.1 Training a Linear Classifier
22(8)
2.2.2 Hinge Loss
30(4)
2.2.3 Logistic Regression
34(3)
2.2.4 Comparing Loss Function
37(4)
2.3 Multiclass Classification
41(10)
2.3.1 One Versus One
41(3)
2.3.2 One Versus Rest
44(2)
2.3.3 Multiclass Hinge Loss
46(2)
2.3.4 Multinomial Logistic Function
48(3)
2.4 Feature Extraction
51(7)
2.5 Learning Π(x)
58(3)
2.6 Artificial Neural Networks
61(20)
2.6.1 Backpropagation
65(6)
2.6.2 Activation Functions
71(7)
2.6.3 Role of Bias
78(1)
2.6.4 Initialization
79(1)
2.6.5 How to Apply on Images
79(2)
2.7 Summary
81(1)
2.8 Exercises
82(3)
References
83(2)
3 Convolutional Neural Networks
85(46)
3.1 Deriving Convolution from a Fully Connected Layer
85(10)
3.1.1 Role of Convolution
90(2)
3.1.2 Backpropagation of Convolution Layers
92(2)
3.1.3 Stride in Convolution
94(1)
3.2 Pooling
95(3)
3.2.1 Backpropagation in Pooling Layer
97(1)
3.3 LeNet
98(2)
3.4 AlexNet
100(1)
3.5 Designing a ConvNet
101(10)
3.5.1 ConvNet Architecture
102(1)
3.5.2 Software Libraries
103(2)
3.5.3 Evaluating a ConvNet
105(6)
3.6 Training a ConvNet
111(13)
3.6.1 Loss Function
112(1)
3.6.2 Initialization
113(2)
3.6.3 Regularization
115(6)
3.6.4 Learning Rate Annealing
121(3)
3.7 Analyzing Quantitative Results
124(2)
3.8 Other Types of Layers
126(2)
3.8.1 Local Response Normalization
126(1)
3.8.2 Spatial Pyramid Pooling
127(1)
3.8.3 Mixed Pooling
127(1)
3.8.4 Batch Normalization
127(1)
3.9 Summary
128(1)
3.10 Exercises
128(3)
References
129(2)
4 Caffe Library
131(36)
4.1 Introduction
131(1)
4.2 Installing Caffe
132(1)
4.3 Designing Using Text Files
132(20)
4.3.1 Providing Data
137(2)
4.3.2 Convolution Layers
139(2)
4.3.3 Initializing Parameters
141(1)
4.3.4 Activation Layer
142(2)
4.3.5 Pooling Layer
144(1)
4.3.6 Fully Connected Layer
145(1)
4.3.7 Dropout Layer
146(1)
4.3.8 Classification and Loss Layers
146(6)
4.4 Training a Network
152(2)
4.5 Designing in Python
154(3)
4.6 Drawing Architecture of Network
157(1)
4.7 Training Using Python
157(1)
4.8 Evaluating Using Python
158(3)
4.9 Save and Restore Networks
161(1)
4.10 Python Layer in Caffe
162(2)
4.11 Summary
164(1)
4.12 Exercises
164(3)
Reference
166(1)
5 Classification of Traffic Signs
167(68)
5.1 Introduction
167(2)
5.2 Related Work
169(4)
5.2.1 Template Matching
170(1)
5.2.2 Hand-Crafted Features
170(1)
5.2.3 Sparse Coding
171(1)
5.2.4 Discussion
171(1)
5.2.5 ConvNets
172(1)
5.3 Preparing Dataset
173(15)
5.3.1 Splitting Data
174(3)
5.3.2 Augmenting Dataset
177(8)
5.3.3 Static Versus One-the-Fly Augmenting
185(1)
5.3.4 Unbalanced Dataset
185(2)
5.3.5 Preparing the GTSRB Dataset
187(1)
5.4 Analyzing Training/Validation Curves
188(1)
5.5 ConvNets for Classification of Traffic Signs
189(10)
5.6 Ensemble of ConvNets
199(4)
5.6.1 Combining Models
200(1)
5.6.2 Training Different Models
201(1)
5.6.3 Creating Ensemble
202(1)
5.7 Evaluating Networks
203(14)
5.7.1 Misclassified Images
208(1)
5.7.2 Cross-Dataset Analysis and Transfer Learning
209(5)
5.7.3 Stability of ConvNet
214(3)
5.7.4 Analyzing by Visualization
217(1)
5.8 Analyzing by Visualizing
217(5)
5.8.1 Visualizing Sensitivity
218(1)
5.8.2 Visualizing the Minimum Perception
219(1)
5.8.3 Visualizing Activations
220(2)
5.9 More Accurate ConvNet
222(8)
5.9.1 Evaluation
224(2)
5.9.2 Stability Against Noise
226(3)
5.9.3 Visualization
229(1)
5.10 Summary
230(1)
5.11 Exercises
231(4)
References
232(3)
6 Detecting Traffic Signs
235(12)
6.1 Introduction
235(1)
6.2 ConvNet for Detecting Traffic Signs
236(3)
6.3 Implementing Sliding Window Within the ConvNet
239(4)
6.4 Evaluation
243(3)
6.5 Summary
246(1)
6.6 Exercises
246(1)
References
246(1)
7 Visualizing Neural Networks
247(12)
7.1 Introduction
247(1)
7.2 Data-Oriented Techniques
248(1)
7.2.1 Tracking Activation
248(1)
7.2.2 Covering Mask
248(1)
7.2.3 Embedding
249(1)
7.3 Gradient-Based Techniques
249(5)
7.3.1 Activation Maximization
250(3)
7.3.2 Activation Saliency
253(1)
7.4 Inverting Representation
254(3)
7.5 Summary
257(1)
7.6 Exercises
257(2)
References
258(1)
Appendix A Gradient Descend 259(16)
Glossary 275(4)
Index 279