Foreword |
|
xix | |
Preface |
|
xxi | |
Acknowledgments |
|
xxiii | |
|
|
1 | (252) |
|
1 Algebraic and Geometric Methods in Enumerative Combinatorics |
|
|
3 | (170) |
|
|
|
5 | (1) |
|
|
6 | (1) |
|
1.2 What is a good answer? |
|
|
6 | (3) |
|
|
9 | (34) |
|
1.3.1 The ring of formal power series |
|
|
10 | (2) |
|
1.3.2 Ordinary generating functions |
|
|
12 | (1) |
|
1.3.2.1 Operations on combinatorial structures and their generating functions |
|
|
13 | (3) |
|
|
16 | (12) |
|
1.3.3 Exponential generating functions |
|
|
28 | (1) |
|
1.3.3.1 Operations on labeled structures and their exponential generating functions |
|
|
28 | (2) |
|
|
30 | (6) |
|
1.3.4 Nice families of generating functions |
|
|
36 | (1) |
|
1.3.4.1 Rational generating functions |
|
|
36 | (2) |
|
1.3.4.2 Algebraic and D-finite generating functions |
|
|
38 | (5) |
|
1.4 Linear algebra methods |
|
|
43 | (28) |
|
1.4.1 Determinants in combinatorics |
|
|
43 | (1) |
|
1.4.1.1 Preliminaries: Graph matrices |
|
|
43 | (1) |
|
1.4.1.2 Walks: the transfer matrix method |
|
|
44 | (6) |
|
14.1.3 Spanning trees: the matrix-tree theorem |
|
|
50 | (3) |
|
1.4.1.4 Eulerian cycles: the BEST theorem |
|
|
53 | (3) |
|
1.4.1.5 Perfect matchings: the Pfaffian method |
|
|
56 | (2) |
|
1.4.1.6 Routings: the Lindstrom--Gessel--Viennot lemma |
|
|
58 | (7) |
|
1.4.2 Computing determinants |
|
|
65 | (1) |
|
|
65 | (1) |
|
1.4.2.2 Row and column operations |
|
|
66 | (1) |
|
1.4.2.3 Identifying linear factors |
|
|
66 | (1) |
|
1.4.2.4 Computing the eigenvalues |
|
|
67 | (1) |
|
1.4.2.5 LU factorizations |
|
|
68 | (1) |
|
1.4.2.6 Hankel determinants and continued fractions |
|
|
68 | (3) |
|
|
71 | (22) |
|
1.5.1 Basic definitions and examples |
|
|
72 | (2) |
|
|
74 | (3) |
|
1.5.3 Zeta polynomials and order polynomials |
|
|
77 | (2) |
|
1.5.4 The inclusion-exclusion formula |
|
|
79 | (2) |
|
1.5.5 Mobius functions and Mobius inversion |
|
|
81 | (1) |
|
1.5.5.1 The Mobius function |
|
|
81 | (2) |
|
|
83 | (2) |
|
1.5.5.3 The incidence algebra |
|
|
85 | (1) |
|
1.5.5.4 Computing Mobius functions |
|
|
86 | (5) |
|
1.5.6 Eulerian posets, flag ƒ-vectors, and flag h-vectors |
|
|
91 | (2) |
|
Part 2 Discrete Geometric Methods |
|
|
93 | (1) |
|
|
93 | (15) |
|
1.6.1 Basic definitions and constructions |
|
|
93 | (5) |
|
|
98 | (2) |
|
|
100 | (2) |
|
1.6.4 Counting lattice points: Ehrhart theory |
|
|
102 | (6) |
|
1.7 Hyperplane arrangements |
|
|
108 | (18) |
|
|
109 | (1) |
|
1.7.2 The characteristic polynomial |
|
|
110 | (2) |
|
1.7.3 Properties of the characteristic polynomial |
|
|
112 | (1) |
|
1.7.3.1 Deletion and contraction |
|
|
112 | (2) |
|
1.7.3.2 Sign alternation and unimodality |
|
|
114 | (1) |
|
1.7.3.3 Graphs and proper colorings |
|
|
114 | (1) |
|
1.7.3.4 Free arrangements |
|
|
115 | (1) |
|
|
116 | (1) |
|
1.7.4 Computing the characteristic polynomial |
|
|
117 | (8) |
|
1.7.5 The cd-index of an arrangement |
|
|
125 | (1) |
|
|
126 | (47) |
|
1.8.1 Main example: Vector configurations and linear matroids |
|
|
127 | (1) |
|
|
128 | (2) |
|
|
130 | (3) |
|
1.8.4 Basic constructions |
|
|
133 | (1) |
|
1.8.5 A few structural results |
|
|
134 | (4) |
|
1.8.6 The Tutte polynomial |
|
|
138 | (1) |
|
1.8.6.1 Explicit definition |
|
|
138 | (1) |
|
1.8.6.2 Recursive definition and universality property |
|
|
138 | (2) |
|
1.8.6.3 Activity interpretation |
|
|
140 | (1) |
|
1.8.6.4 Finite field interpretation |
|
|
140 | (1) |
|
1.8.7 Tutte polynomial evaluations |
|
|
141 | (1) |
|
1.8.7.1 General evaluations |
|
|
142 | (1) |
|
|
143 | (3) |
|
1.8.7.3 Hyperplane arrangements |
|
|
146 | (1) |
|
1.8.7.4 Algebras from arrangements |
|
|
146 | (1) |
|
1.8.7.5 Error-correcting codes |
|
|
147 | (1) |
|
1.8.7.6 Probability and statistical mechanics |
|
|
148 | (1) |
|
1.8.7.7 Other applications |
|
|
149 | (1) |
|
1.8.8 Computing the Tutte polynomial |
|
|
150 | (3) |
|
1.8.9 Generalizations of the Tutte polynomial |
|
|
153 | (2) |
|
1.8.10 Matroid subdivisions, valuations, and the Derksen-Fink invariant |
|
|
155 | (18) |
|
|
173 | (80) |
|
|
|
174 | (1) |
|
2.2 Combinatorial constructions and associated ordinary generating functions |
|
|
175 | (5) |
|
2.3 Combinatorial constructions and associated exponential generating functions |
|
|
180 | (7) |
|
2.4 Partitions and q-series |
|
|
187 | (4) |
|
2.5 Some applications of the adding a slice technique |
|
|
191 | (3) |
|
2.6 Lagrange inversion formula |
|
|
194 | (2) |
|
2.7 Lattice path enumeration: the continued fraction theorem |
|
|
196 | (5) |
|
2.8 Lattice path enumeration: the kernel method |
|
|
201 | (4) |
|
2.9 Gamma and zeta function |
|
|
205 | (3) |
|
2.10 Harmonic numbers and their generating functions |
|
|
208 | (1) |
|
2.11 Approximation of binomial coefficients |
|
|
209 | (2) |
|
2.12 Mellin transform and asymptotics of harmonic sums |
|
|
211 | (7) |
|
2.13 The Mellin-Perron formula |
|
|
218 | (4) |
|
2.14 Mellin-Perron formula: divide-and-conquer recursions |
|
|
222 | (1) |
|
|
223 | (4) |
|
2.16 Approximate counting |
|
|
227 | (4) |
|
2.17 Singularity analysis of generating functions |
|
|
231 | (5) |
|
2.18 Longest runs in words |
|
|
236 | (2) |
|
2.19 Inversions in permutations and pumping moments |
|
|
238 | (3) |
|
|
241 | (3) |
|
2.21 The saddle point method |
|
|
244 | (3) |
|
2.22 Hwang's quasi-power theorem |
|
|
247 | (6) |
|
|
253 | (794) |
|
3 Asymptotic Normality in Enumeration |
|
|
255 | (26) |
|
|
|
255 | (1) |
|
3.2 The normal distribution |
|
|
256 | (2) |
|
3.3 Method 1: direct approach |
|
|
258 | (4) |
|
3.4 Method 2: negative roots |
|
|
262 | (4) |
|
|
266 | (4) |
|
3.6 Method 4: singularity analysis |
|
|
270 | (2) |
|
|
272 | (2) |
|
3.8 Multivariate asymptotic normality |
|
|
274 | (2) |
|
3.9 Normality in service to approximate enumeration |
|
|
276 | (5) |
|
|
281 | (54) |
|
|
|
281 | (2) |
|
|
283 | (3) |
|
|
286 | (9) |
|
4.3.1 Generating functions and combinatorial constructions |
|
|
286 | (6) |
|
4.3.2 The Lagrange inversion formula |
|
|
292 | (1) |
|
4.3.3 The dissymmetry theorem |
|
|
293 | (1) |
|
|
294 | (1) |
|
|
295 | (9) |
|
|
295 | (4) |
|
4.4.2 Planted plane trees |
|
|
299 | (5) |
|
44.3 Unlabeled plane trees |
|
|
304 | (6) |
|
4.4.4 General unlabeled trees |
|
|
305 | (3) |
|
4.4.5 Simply generated trees and Galton-Watson trees |
|
|
308 | (2) |
|
|
310 | (11) |
|
4.5.1 Cayley trees and related trees |
|
|
311 | (5) |
|
|
316 | (2) |
|
|
318 | (3) |
|
4.6 Selected topics on trees |
|
|
321 | (14) |
|
|
321 | (3) |
|
|
324 | (5) |
|
|
329 | (6) |
|
|
335 | (62) |
|
|
|
336 | (1) |
|
|
336 | (8) |
|
|
336 | (3) |
|
5.2.2 Plane maps, rooted maps and orientations |
|
|
339 | (3) |
|
5.2.3 Which maps shall we count? |
|
|
342 | (2) |
|
5.3 Counting tree-rooted maps |
|
|
344 | (9) |
|
5.3.1 Mullin's decomposition |
|
|
344 | (4) |
|
5.3.2 Spanning trees and orientations |
|
|
348 | (2) |
|
5.3.3 Vertex blowing and polyhedral nets |
|
|
350 | (2) |
|
5.3.4 A summary and some observations |
|
|
352 | (1) |
|
|
353 | (17) |
|
5.4.1 The exact number of rooted planar maps |
|
|
353 | (5) |
|
5.4.2 Unrooted planar maps |
|
|
358 | (2) |
|
5.4.3 Two bijections between maps and trees |
|
|
360 | (4) |
|
5.4.4 Substitution relations |
|
|
364 | (3) |
|
5.4.5 Asymptotic enumeration and uniform random planar maps |
|
|
367 | (3) |
|
54.6 Distances in planar maps |
|
|
370 | (4) |
|
5.4.7 Local limit, continuum limit |
|
|
373 | (1) |
|
5.5 Beyond planar maps, an even shorter account |
|
|
374 | (23) |
|
5.5.1 Patterns and universality |
|
|
375 | (1) |
|
5.5.2 The bijective canvas and master bijections |
|
|
376 | (4) |
|
|
380 | (2) |
|
|
382 | (15) |
|
|
397 | (40) |
|
|
|
398 | (2) |
|
|
400 | (6) |
|
6.2.1 Graphs with given connectivity |
|
|
401 | (3) |
|
6.2.2 Graphs with given minimum degree |
|
|
404 | (1) |
|
|
405 | (1) |
|
6.3 Connected graphs with given excess |
|
|
406 | (3) |
|
|
409 | (3) |
|
|
409 | (2) |
|
6.4.2 Differential equations |
|
|
411 | (1) |
|
6.5 Monotone and hereditary classes |
|
|
412 | (5) |
|
|
412 | (2) |
|
|
414 | (3) |
|
|
417 | (3) |
|
6.7 Graphs on surfaces and graph minors |
|
|
420 | (6) |
|
|
420 | (2) |
|
|
422 | (1) |
|
|
423 | (3) |
|
|
426 | (2) |
|
|
426 | (2) |
|
6.8.2 Strongly connected digraphs |
|
|
428 | (1) |
|
|
428 | (9) |
|
6.9.1 Counting graphs under symmetries |
|
|
429 | (1) |
|
|
430 | (7) |
|
7 Unimodality, Log-concavity, Real-rootedness and Beyond |
|
|
437 | (48) |
|
|
|
438 | (3) |
|
7.2 Probabilistic consequences of real-rootedness |
|
|
441 | (1) |
|
7.3 Unimodality and γ-nonnegativity |
|
|
442 | (8) |
|
7.3.1 An action on permutations |
|
|
443 | (3) |
|
7.3.2 γ-nonnegativity of h-polynomials |
|
|
446 | (1) |
|
7.3.3 Barycentric subdivisions |
|
|
447 | (2) |
|
7.3.4 Unimodality of h*-polynomials |
|
|
449 | (1) |
|
7.4 Log-concavity and matroids |
|
|
450 | (2) |
|
7.5 Infinite log-concavity |
|
|
452 | (1) |
|
7.6 The Neggers--Stanley conjecture |
|
|
453 | (3) |
|
7.7 Preserving real-rootedness |
|
|
456 | (4) |
|
7.7.1 The subdivision operator |
|
|
459 | (1) |
|
|
460 | (8) |
|
7.8.1 s-Eulerian polynomials |
|
|
464 | (1) |
|
7.8.2 Eulerian polynomials for finite Coxeter groups |
|
|
465 | (3) |
|
7.9 Multivariate techniques |
|
|
468 | (8) |
|
7.9.1 Stable polynomials and matroids |
|
|
469 | (1) |
|
7.9.2 Strong Rayleigh measures |
|
|
470 | (2) |
|
7.9.3 The symmetric exclusion process |
|
|
472 | (2) |
|
7.9.4 The Grace--Walsh--Szego theorem, and the proof of Theorem 7.5.1 |
|
|
474 | (2) |
|
|
476 | (9) |
|
|
485 | (56) |
|
|
|
|
486 | (1) |
|
|
487 | (5) |
|
|
488 | (3) |
|
|
491 | (1) |
|
|
492 | (8) |
|
|
492 | (1) |
|
|
493 | (4) |
|
|
497 | (3) |
|
|
500 | (4) |
|
8.4.1 The factorization theorem |
|
|
501 | (2) |
|
8.4.2 Generating Lyndon words |
|
|
503 | (1) |
|
8.5 Eulerian graphs and de Bruijn cycles |
|
|
504 | (8) |
|
|
507 | (1) |
|
8.5.2 The Matrix-tree theorem |
|
|
508 | (2) |
|
8.5.3 Lyndon words and de Bruijn cycles |
|
|
510 | (2) |
|
|
512 | (9) |
|
|
513 | (3) |
|
8.6.2 Unavoidable sets of constant length |
|
|
516 | (3) |
|
|
519 | (2) |
|
8.7 The Burrows--Wheeler transform |
|
|
521 | (4) |
|
8.7.1 The inverse transform |
|
|
522 | (2) |
|
8.7.2 Descents of a permutation |
|
|
524 | (1) |
|
8.8 The Gessel-Reutenauer bijection |
|
|
525 | (5) |
|
8.8.1 Gessel-Reutenauer bijection and de Bruijn cycles |
|
|
527 | (3) |
|
|
530 | (11) |
|
8.9.1 Suffix arrays and Burrows-Wheeler transform |
|
|
530 | (2) |
|
8.9.2 Counting suffix arrays |
|
|
532 | (9) |
|
|
541 | (48) |
|
|
|
541 | (7) |
|
9.2 The transfer matrix method |
|
|
548 | (3) |
|
9.3 Other determinant methods |
|
|
551 | (5) |
|
|
551 | (2) |
|
9.3.2 The permanent-determinant and Hafnian-Pfaffian method |
|
|
553 | (2) |
|
9.3.3 The spanning tree method |
|
|
555 | (1) |
|
9.4 Representation-theoretic methods |
|
|
556 | (3) |
|
9.5 Other combinatorial methods |
|
|
559 | (3) |
|
9.6 Related topics, and an attempt at history |
|
|
562 | (3) |
|
|
565 | (6) |
|
9.7.1 Recurrence relations |
|
|
565 | (1) |
|
|
566 | (2) |
|
9.7.3 Non-periodic weights |
|
|
568 | (1) |
|
9.7.4 Other numerical patterns |
|
|
569 | (1) |
|
|
570 | (1) |
|
|
571 | (2) |
|
|
573 | (16) |
|
10 Lattice Path Enumeration |
|
|
589 | (90) |
|
|
|
589 | (3) |
|
10.2 Lattice paths without restrictions |
|
|
592 | (2) |
|
10.3 Linear boundaries of slope 1 |
|
|
594 | (4) |
|
10.4 Simple paths with linear boundaries of rational slope, I |
|
|
598 | (8) |
|
10.5 Simple paths with linear boundaries with rational slope, II |
|
|
606 | (5) |
|
10.6 Simple paths with a piecewise linear boundary |
|
|
611 | (1) |
|
10.7 Simple paths with general boundaries |
|
|
612 | (3) |
|
10.8 Elementary results on Motzkin and Schroder paths |
|
|
615 | (3) |
|
10.9 A continued fraction for the weighted counting of Motzkin paths |
|
|
618 | (4) |
|
10.10 Lattice paths and orthogonal polynomials |
|
|
622 | (7) |
|
10.11 Motzkin paths in a strip |
|
|
629 | (4) |
|
10.12 Further results for lattice paths in the plane |
|
|
633 | (5) |
|
10.13 Non-intersecting lattice paths |
|
|
638 | (13) |
|
10.14 Lattice paths and their turns |
|
|
651 | (6) |
|
10.15 Multidimensional lattice paths |
|
|
657 | (1) |
|
10.16 Multidimensional lattice paths bounded by a hyperplane |
|
|
658 | (1) |
|
10.17 Multidimensional paths with a general boundary |
|
|
658 | (1) |
|
10.18 The reflection principle in full generality |
|
|
659 | (8) |
|
10.19 q-Counting of lattice paths and Rogers-Ramanujan identities |
|
|
667 | (3) |
|
10.20 Self-avoiding walks |
|
|
670 | (9) |
|
11 Catalan Paths and g, t-enumeration |
|
|
679 | (74) |
|
|
|
680 | (1) |
|
11.2 Introduction to q-analogues and Catalan numbers |
|
|
680 | (22) |
|
11.2.1 Permutation statistics and Gaussian polynomials |
|
|
680 | (6) |
|
11.2.2 The Catalan numbers and Dyck paths |
|
|
686 | (3) |
|
11.2.3 The q-Vandermonde convolution |
|
|
689 | (2) |
|
11.2.4 Symmetric functions |
|
|
691 | (1) |
|
|
691 | (3) |
|
11.2.4.2 Tableaux and Schur functions |
|
|
694 | (3) |
|
11.2.4.3 Statistics on tableaux |
|
|
697 | (1) |
|
11.2.5 Representation theory |
|
|
698 | (3) |
|
11.2.5.1 The ring of coinvariants and the space of diagonal harmonics |
|
|
701 | (1) |
|
11.3 The q, t-Catalan numbers |
|
|
702 | (14) |
|
11.3.1 The bounce statistic |
|
|
704 | (3) |
|
11.3.2 The special values t = 1 and t = 1/q |
|
|
707 | (2) |
|
11.3.3 The symmetry problem and the dinv statistic |
|
|
709 | (3) |
|
11.3.4 q-Lagrange inversion |
|
|
712 | (4) |
|
11.4 Parking functions and the Hilbert series |
|
|
716 | (15) |
|
11.4.1 Extension of the dinv statistic |
|
|
716 | (2) |
|
11.4.2 An explicit formula |
|
|
718 | (3) |
|
11.4.3 The statistic area' |
|
|
721 | (1) |
|
11.4.4 The pmaj statistic |
|
|
722 | (3) |
|
11.4.5 The cyclic-shift operation |
|
|
725 | (4) |
|
|
729 | (2) |
|
11.5 The q, t-Schroder polynomial |
|
|
731 | (11) |
|
11.5.1 The Schroder bounce and area statistics |
|
|
731 | (3) |
|
11.5.2 Recurrences and explicit formulae |
|
|
734 | (4) |
|
11.5.3 The special value t = 1/q |
|
|
738 | (1) |
|
11.5.4 A Schroder dinv-statistic |
|
|
739 | (1) |
|
11.5.5 The shuffle conjecture |
|
|
740 | (2) |
|
11.6 Rational Catalan combinatorics |
|
|
742 | (11) |
|
11.6.1 The superpolynomial invariant of a torus knot |
|
|
742 | (3) |
|
11.6.2 Tesler matrices and the superpolynomial |
|
|
745 | (8) |
|
|
753 | (82) |
|
|
|
754 | (17) |
|
|
755 | (4) |
|
12.1.2 Avoiding a permutation of length three |
|
|
759 | (2) |
|
|
761 | (5) |
|
12.1.4 Avoiding a longer permutation |
|
|
766 | (5) |
|
12.2 Growth rates of principal classes |
|
|
771 | (15) |
|
12.2.1 Matrices and the interval minor order |
|
|
773 | (4) |
|
12.2.2 The number of light matrices |
|
|
777 | (1) |
|
12.2.3 Matrices avoiding Jk are light |
|
|
778 | (2) |
|
12.2.4 Dense matrices contain many permutations |
|
|
780 | (2) |
|
12.2.5 Dense matrices avoiding Jk |
|
|
782 | (4) |
|
12.3 Notions of structure |
|
|
786 | (14) |
|
12.3.1 Merging and splitting |
|
|
788 | (4) |
|
12.3.2 The substitution decomposition |
|
|
792 | (5) |
|
|
797 | (3) |
|
12.4 The set of all growth rates |
|
|
800 | (18) |
|
12.4.1 Monotone grid classes |
|
|
803 | (5) |
|
12.4.2 Geometric grid classes |
|
|
808 | (7) |
|
12.4.3 Generalized grid classes |
|
|
815 | (3) |
|
124.4 Small permutation classes |
|
|
818 | (17) |
|
|
835 | (60) |
|
|
|
836 | (1) |
|
13.2 Parking functions and labeled trees |
|
|
837 | (13) |
|
13.2.1 Labeled trees with Prufer code |
|
|
837 | (2) |
|
13.2.2 Inversions of labeled trees |
|
|
839 | (4) |
|
13.2.3 Graph searching algorithms |
|
|
843 | (4) |
|
13.2.4 External activity of labeled trees |
|
|
847 | (1) |
|
13.2.5 Sparse connected graphs |
|
|
848 | (2) |
|
13.3 Many faces of parking functions |
|
|
850 | (9) |
|
13.3.1 Hashing and linear probing |
|
|
850 | (2) |
|
13.3.2 Lattice of noncrossing partitions |
|
|
852 | (3) |
|
13.3.3 Hyperplane arrangements |
|
|
855 | (2) |
|
13.3.4 Allowable input-output pairs in a priority queue |
|
|
857 | (1) |
|
13.3.5 Two variations of parking functions |
|
|
858 | (1) |
|
13.4 Generalized parking functions |
|
|
859 | (15) |
|
13.4.1 u-parking functions |
|
|
859 | (2) |
|
13.4.2 A parking polytope |
|
|
861 | (3) |
|
13.4.3 Theory of Goncarov polynomials |
|
|
864 | (6) |
|
13.4.4 Classical parking functions |
|
|
870 | (4) |
|
13.5 Parking functions associated with graphs |
|
|
874 | (10) |
|
13.5.1 G-parking functions |
|
|
874 | (1) |
|
13.5.2 Abelian sandpile model |
|
|
875 | (3) |
|
13.5.3 Multiparking functions, graph searching, and the Tutte polynomial |
|
|
878 | (6) |
|
|
884 | (11) |
|
14 Standard Young Tableaux |
|
|
895 | (80) |
|
|
|
|
896 | (2) |
|
|
896 | (2) |
|
|
898 | (1) |
|
|
898 | (7) |
|
14.2.1 Diagrams and tableaux |
|
|
898 | (1) |
|
14.2.2 Connectedness and convexity |
|
|
899 | (1) |
|
14.2.3 Invariance under symmetry |
|
|
900 | (1) |
|
14.2.4 Ordinary, skew and shifted shapes |
|
|
901 | (2) |
|
|
903 | (1) |
|
14.2.5.1 The Young lattice |
|
|
903 | (1) |
|
14.2.5.2 Ballot sequences and lattice paths |
|
|
903 | (1) |
|
14.2.5.3 The order polytope |
|
|
904 | (1) |
|
14.2.5.4 Other interpretations |
|
|
905 | (1) |
|
|
905 | (1) |
|
14.3 Formulas for thin shapes |
|
|
905 | (3) |
|
|
905 | (1) |
|
|
906 | (1) |
|
|
907 | (1) |
|
14.4 Jeu de taquin and the RS correspondence |
|
|
908 | (5) |
|
|
908 | (2) |
|
14.4.2 The Robinson-Schensted correspondence |
|
|
910 | (1) |
|
14.4.3 Enumerative applications |
|
|
911 | (2) |
|
14.5 Formulas for classical shapes |
|
|
913 | (6) |
|
|
913 | (3) |
|
|
916 | (2) |
|
|
918 | (1) |
|
14.6 More proofs of the hook length formula |
|
|
919 | (11) |
|
14.6.1 A probabilistic proof |
|
|
919 | (2) |
|
|
921 | (5) |
|
14.6.3 Partial difference operators |
|
|
926 | (4) |
|
14.7 Formulas for skew strips |
|
|
930 | (8) |
|
|
930 | (3) |
|
14.7.2 Skew strips of constant width |
|
|
933 | (5) |
|
14.8 Truncated and other non-classical shapes |
|
|
938 | (6) |
|
14.8.1 Truncated shifted staircase shape |
|
|
938 | (1) |
|
14.8.2 Truncated rectangular shapes |
|
|
939 | (2) |
|
14.8.3 Other truncated shapes |
|
|
941 | (1) |
|
14.8.4 Proof approaches for truncated shapes |
|
|
942 | (2) |
|
14.9 Rim hook and domino tableaux |
|
|
944 | (5) |
|
|
944 | (1) |
|
14.9.2 The r-quotient and r-core |
|
|
945 | (4) |
|
|
949 | (8) |
|
14.10.1 Permutation statistics |
|
|
949 | (1) |
|
14.10.2 Statistics on tableaux |
|
|
950 | (2) |
|
|
952 | (1) |
|
|
952 | (1) |
|
|
952 | (1) |
|
14.10.3.3 Two-rowed shapes |
|
|
953 | (2) |
|
|
955 | (1) |
|
14.10.4.1 Counting by descents |
|
|
955 | (1) |
|
14.10.4.2 Counting by major index |
|
|
956 | (1) |
|
14.10.4.3 Counting by inversions |
|
|
957 | (1) |
|
14.11 Counting reduced words |
|
|
957 | (4) |
|
14.11.1 Coxeter generators and reduced words |
|
|
957 | (1) |
|
14.11.2 Ordinary and skew shapes |
|
|
958 | (2) |
|
|
960 | (1) |
|
14.12 Appendix 1: Representation theoretic aspects |
|
|
961 | (3) |
|
14.12.1 Degrees and enumeration |
|
|
961 | (2) |
|
14.12.2 Characters and q-enumeration |
|
|
963 | (1) |
|
14.13 Appendix 2: Asymptotics and probabilistic aspects |
|
|
964 | (11) |
|
|
975 | (72) |
|
|
|
976 | (1) |
|
15.2 Computer algebra essentials |
|
|
977 | (19) |
|
|
978 | (1) |
|
15.2.1.1 Integers and rational numbers |
|
|
978 | (1) |
|
15.2.1.2 Algebraic numbers |
|
|
978 | (1) |
|
15.2.1.3 Real and complex numbers |
|
|
979 | (1) |
|
15.2.1.4 Finite fields and modular arithmetic |
|
|
980 | (1) |
|
15.2.1.5 Lattice reduction |
|
|
981 | (2) |
|
|
983 | (1) |
|
15.2.2.1 Arithmetic and factorization |
|
|
984 | (1) |
|
15.2.2.2 Evaluation and interpolation |
|
|
985 | (1) |
|
|
985 | (2) |
|
15.2.2.4 Cylindrical algebraic decomposition |
|
|
987 | (1) |
|
15.2.3 Formal power series |
|
|
988 | (1) |
|
15.2.3.1 Truncated power series |
|
|
988 | (1) |
|
15.2.3.2 Lazy power series |
|
|
989 | (1) |
|
15.2.3.3 Generalized series |
|
|
990 | (1) |
|
15.2.3.4 The multivariate case |
|
|
990 | (1) |
|
|
991 | (1) |
|
|
992 | (1) |
|
15.2.4.2 Actions and solutions |
|
|
993 | (3) |
|
|
996 | (15) |
|
15.3.1 Special purpose algorithms |
|
|
996 | (3) |
|
15.3.2 Combinatorial species |
|
|
999 | (1) |
|
15.3.2.1 Formal definition and associated series |
|
|
1000 | (1) |
|
15.3.2.2 Standard constructions |
|
|
1000 | (2) |
|
15.3.2.3 Recursive specifications |
|
|
1002 | (1) |
|
15.3.3 Partition analysis |
|
|
1003 | (1) |
|
|
1003 | (2) |
|
|
1005 | (2) |
|
15.3.4 Computational group theory |
|
|
1007 | (1) |
|
15.3.4.1 Permutation groups |
|
|
1007 | (1) |
|
15.3.4.2 Finitely presented groups |
|
|
1008 | (2) |
|
|
1010 | (1) |
|
|
1011 | (17) |
|
15.4.1 Classical algorithms |
|
|
1011 | (1) |
|
15.4.1.1 Hypergeometric terms |
|
|
1011 | (1) |
|
15.4.1.2 Gosper's algorithm |
|
|
1012 | (1) |
|
15.4.1.3 Zeilberger's algorithm |
|
|
1013 | (1) |
|
15.4.1.4 Petkovsek's algorithm |
|
|
1014 | (1) |
|
|
1015 | (1) |
|
15.4.2.1 ΠΣ-Expressions and difference fields |
|
|
1015 | (2) |
|
15.4.2.2 Indefinite summation |
|
|
1017 | (2) |
|
15.4.2.3 Creative telescoping |
|
|
1019 | (1) |
|
15.4.2.4 D'Alembertian solutions |
|
|
1020 | (1) |
|
15.4.2.5 Nested definite sums |
|
|
1021 | (1) |
|
15.4.3 The holonomic systems approach |
|
|
1021 | (1) |
|
15.4.3.1 D-finite and holonomic functions |
|
|
1022 | (1) |
|
15.4.3.2 Closure properties |
|
|
1023 | (2) |
|
15.4.3.3 Summation and integration |
|
|
1025 | (1) |
|
15.4.3.4 Nested sums and integrals |
|
|
1026 | (1) |
|
15.4.4 Implementations and current research topics |
|
|
1027 | (1) |
|
15.5 The guess-and-prove paradigm |
|
|
1028 | (19) |
Index |
|
1047 | |