Muutke küpsiste eelistusi

E-raamat: Hangzhou Lectures on Eigenfunctions of the Laplacian

  • Formaat: 208 pages
  • Sari: Annals of Mathematics Studies
  • Ilmumisaeg: 10-Mar-2014
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9781400850549
  • Formaat - EPUB+DRM
  • Hind: 88,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 208 pages
  • Sari: Annals of Mathematics Studies
  • Ilmumisaeg: 10-Mar-2014
  • Kirjastus: Princeton University Press
  • Keel: eng
  • ISBN-13: 9781400850549

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 


Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic.


Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.


Arvustused

"The book is very well written... I would definitely recommend it to anybody who wants to learn spectral geometry."--Leonid Friedlander, Mathematical Reviews

Preface ix
1 A review: The Laplacian and the d'Alembertian
1(15)
1.1 The Laplacian
1(5)
1.2 Fundamental solutions of the d'Alembertian
6(10)
2 Geodesies and the Hadamard parametrix
16(23)
2.1 Laplace-Beltrami operators
16(4)
2.2 Some elliptic regularity estimates
20(4)
2.3 Geodesies and normal coordinates---a brief review
24(7)
2.4 The Hadamard parametrix
31(8)
3 The sharp Weyl formula
39(32)
3.1 Eigenfunction expansions
39(9)
3.2 Sup-norm estimates for eigenfunctions and spectral clusters
48(5)
3.3 Spectral asymptotics: The sharp Weyl formula
53(2)
3.4 Sharpness: Spherical harmonics
55(3)
3.5 Improved results: The torus
58(7)
3.6 Further improvements: Manifolds with nonpositive curvature
65(6)
4 Stationary phase and microlocal analysis
71(49)
4.1 The method of stationary phase
71(15)
4.2 Pseudodifferential operators
86(17)
4.3 Propagation of singularities and Egorov's theorem
103(8)
4.4 The Friedrichs quantization
111(9)
5 Improved spectral asymptotics and periodic geodesies
120(21)
5.1 Periodic geodesies and trace regularity
120(3)
5.2 Trace estimates
123(9)
5.3 The Duistermaat-Guillemm theorem
132(4)
5.4 Geodesic loops and improved sup-norm estimates
136(5)
6 Classical and quantum ergodicity
141(24)
6.1 Classical ergodicity
141(12)
6.2 Quantum ergodicity
153(12)
Appendix
165(18)
A.1 The Fourier transform and the spaces S(Rn) and S'(Rn)
165(4)
A.2 The spaces D'(Ω) and ε (Ω)
169(4)
A.3 Homogeneous distributions
173(3)
A.4 Pullbacks of distributions
176(3)
A.5 Convolution of distributions
179(4)
Notes 183(2)
Bibliography 185(6)
Index 191(2)
Symbol Glossary 193
Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at Johns Hopkins University. He is the author of Fourier Integrals in Classical Analysis and Lectures on Nonlinear Wave Equations.