Muutke küpsiste eelistusi

Hardware Acceleration of EDA Algorithms: Custom ICs, FPGAs and GPUs [Kõva köide]

  • Formaat: Hardback, 192 pages, kõrgus x laius: 235x155 mm, kaal: 1060 g, XXII, 192 p., 1 Hardback
  • Ilmumisaeg: 06-Apr-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1441909435
  • ISBN-13: 9781441909435
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 192 pages, kõrgus x laius: 235x155 mm, kaal: 1060 g, XXII, 192 p., 1 Hardback
  • Ilmumisaeg: 06-Apr-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1441909435
  • ISBN-13: 9781441909435
Teised raamatud teemal:
This book deals with the acceleration of EDA algorithms using hardware platforms such as FPGAs and GPUs. Widely applied CAD algorithms are evaluated and compared for potential acceleration on FPGAs and GPUs. Coverage includes discussion of conditions under which it is preferable to use one platform over another, e.g., when an EDA problem has a high degree of data parallelism, the GPU is typically the preferred platform, whereas when the problem has more control, an FPGA may be preferred. Results are presented for the acceleration of several CAD algorithms (fault simulation, fault table generation, model card evaluation in SPICE, Monte Carlo statistical static timing analysis), demonstrating speedups from 30X to 800X.This book serves as a valuable guide on how best to leverage parallelism to accelerate CAD algorithms. It also presents a methodology to extract automatically SIMD parallelism from regular uniprocessor code. With this approach, uniprocessor code can automatically be converted to GPU code, allowing for significant acceleration. This approach is particularly useful, since different GPUs have vastly different specifications, making the manual generation of GPU code an unscalable proposition.

This text covers the acceleration of EDA algorithms using hardware platforms such as FPGAs and GPUs. In it, widely applied CAD algorithms are evaluated and compared for potential acceleration on FPGAs and GPUs.
Introduction
1(8)
Hardware Platforms Considered in This Research Monograph
3(1)
EDA Algorithms Studied in This Research Monograph
3(1)
Control-Dominated Applications
4(1)
Control Plus Data Parallel Applications
4(1)
Automated Approach for GPU-Based Software Acceleration
4(1)
Chapter Summary
4(1)
References
5(4)
Part I Alternative Hardware Platforms
Hardware Platforms
9(14)
Chapter Overview
9(1)
Introduction
9(1)
Hardware Platforms Studied in This Research Monograph
10(1)
Custom ICs
10(1)
FPGAs
10(1)
Graphics Processors
10(1)
General Overview and Architecture
11(3)
Programming Model and Environment
14(1)
Scalability
15(1)
Design Turn-Around Time
16(1)
Performance
16(2)
Cost of Hardware
18(1)
Floating Point Operations
18(1)
Security and Real-Time Applications
19(1)
Applications
19(1)
Chapter Summary
20(1)
References
20(3)
GPU Architecture and the CUDA Programming Model
23(10)
Chapter Overview
23(1)
Introduction
23(1)
Hardware Model
24(1)
Memory Model
25(3)
Programming Model
28(2)
Chapter Summary
30(1)
References
30(3)
Part II Control-Dominatgede Category
Accelerating Boolean Satisfiability on a Custom IC
33(30)
Chapter Overview
33(1)
Introduction
34(2)
Previous Work
36(1)
Hardware Architecture
37(13)
Abstract Overview
37(1)
Hardware Overview
38(1)
Hardware Details
39(11)
An Example of Conflict Clause Generation
50(1)
Partitioning the CNF Instance
51(2)
Extraction of the Unsatisfiable Core
53(1)
Experimental Results
54(5)
Chapter Summary
59(1)
References
59(4)
Accelerating Boolean Satisfiability on an FPGA
63(20)
Chapter Overview
63(1)
Introduction
64(1)
Previous Work
64(2)
Hardware Architecture
66(1)
Architecture Overview
66(1)
Solving a CNF Instance Which Is Partitioned into Several Bins
67(2)
Partitioning the CNF Instance
69(1)
Hardware Details
70(2)
Experimental Results
72(8)
Current Implementation
72(1)
Performance Model
73(4)
Projections
77(3)
Chapter Summary
80(1)
References
80(3)
Accelerating Boolean Satisfiability on a Graphics Processing Unit
83(22)
Chapter Overview
83(1)
Introduction
83(2)
Related Previous Work
85(2)
Our Approach
87(9)
SurveySAT and the GPU
87(6)
MiniSAT Enhanced with Survey Propagation (MESP)
93(3)
Experimental Results
96(2)
Chapter Summary
98(1)
References
98(7)
Part III Control Plus Data Parallel Applications
Accelerating Statistical Static Timing Analysis Using Graphics Processors
105(14)
Chapter Overview
105(1)
Introduction
106(2)
Previous Work
108(1)
Our Approach
109(4)
Static Timing Analysis (STA) at a Gate
109(3)
Statistical Static Timing Analysis (SSTA) at a Gate
112(1)
Experimental Results
113(3)
Chapter Summary
116(1)
References
116(3)
Accelerating Fault Simulation Using Graphics Processors
119(14)
Chapter Overview
119(1)
Introduction
119(2)
Previous Work
121(1)
Our Approach
122(7)
Logic Simulation at a Gate
123(2)
Fault Injection at a Gate
125(1)
Fault Detection at a Gate
126(1)
Fault Simulation of a Circuit
127(2)
Experimental Results
129(2)
Chapter Summary
131(1)
References
131(2)
Fault Table Generation Using Graphics Processors
133(20)
Chapter Overview
133(1)
Introduction
134(2)
Previous Work
136(1)
Our Approach
136(10)
Definitions
137(2)
Algorithms: FSIM and GFTABLE
139(7)
Experimental Results
146(4)
Chapter Summary
150(1)
References
151(2)
Accelerating Circuit Simulation Using Graphics Processors
153(16)
Chapter Overview
153(1)
Introduction
153(2)
Previous Work
155(2)
Our Approach
157(5)
Parallelizing BSIM3 Model Computations on a GPU
158(4)
Experiments
162(3)
Chapter Summary
165(1)
References
165(4)
Part IV Automated Generation of GPU Code
Automated Approach for Graphics Processor Based Software Acceleration
169(12)
Chapter Overview
169(1)
Introduction
169(2)
Our Approach
171(5)
Problem Definition
171(1)
GPU Constraints on the Kernel Generation Engine
172(1)
Automatic Kernel Generation Engine
173(3)
Experimental Results
176(3)
Evaluation Methodology
177(2)
Chapter Summary
179(1)
References
179(2)
Conclusions
181(8)
References
187(2)
Index 189