Muutke küpsiste eelistusi

E-raamat: High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications

(University of California, Berkeley), (Columbia University, New York)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Jan-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108805551
  • Formaat - PDF+DRM
  • Hind: 77,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 13-Jan-2022
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108805551

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

Arvustused

'Students will learn a lot from reading this book They will learn about mathematical reasoning, they will learn about data models and about connecting those to reality, and they will learn about algorithms. The book also contains computer scripts so that we can see ideas in action, and carefully crafted exercises making it perfect for upper-level undergraduate or graduate-level instruction. The breadth and depth make this a reference for anyone interested in the mathematical foundations of data science.' Emmanuel Candès, Stanford University (from the foreword) 'At the very core of our ability to process data stands the fact that sources of information are structured. Modeling data, explicitly or implicitly, is our way of exposing this structure and exploiting it, being the essence of the fields of signal and image processing and machine learning. The past two decades have brought a revolution to our understanding of these facts, and this 'must-read' book provides the foundations of these recent developments, covering theoretical, numerical, and applicative aspects of this field in a thorough and clear manner.' Michael Elad, Technion Israel Institute of Technology

Muu info

Connects fundamental mathematical theory with real-world problems, through efficient and scalable optimization algorithms.
Foreword xv
Preface xix
Acknowledgements xxviii
1 Introduction
1(30)
1.1 A Universal Task: Pursuit of Low-Dimensional Structure
1(8)
1.1.1 Identifying Dynamical Systems and Serial Data
1(2)
1.1.2 Patterns and Orders in a Man-Made World
3(2)
1.1.3 Efficient Data Acquisition and Processing
5(2)
1.1.4 Interpretation of Data with Graphical Models
7(2)
1.2 A Brief History
9(11)
1.2.1 Neural Science: Sparse Coding
9(3)
1.2.2 Signal Processing: Sparse Error Correction
12(3)
1.2.3 Classical Statistics: Sparse Regression Analysis
15(3)
1.2.4 Data Analysis: Principal Component Analysis
18(2)
1.3 The Modern Era
20(9)
1.3.1 From Curses to Blessings of High Dimensionality
20(2)
1.3.2 Compressive Sensing, Error Correction, and Deep Learning
22(2)
1.3.3 High-Dimensional Geometry and Nonasymptotic Statistics
24(2)
1.3.4 Scalable Optimization: Convex and Nonconvex
26(2)
1.3.5 A Perfect Storm
28(1)
1.4 Exercises
29(2)
Part I Principles of Low-Dimensional Models
31(272)
2 Sparse Signal Models
33(36)
2.1 Applications of Sparse Signal Modeling
33(8)
2.1.1 An Example from Medical Imaging
34(3)
2.1.2 An Example from Image Processing
37(2)
2.1.3 An Example from Face Recognition
39(2)
2.2 Recovering a Sparse Solution
41(10)
2.2.1 Norms on Vector Spaces
42(2)
2.2.2 The l0 Norm
44(1)
2.2.3 The Sparsest Solution: Minimizing the l0 Norm
45(3)
2.2.4 Computational Complexity of l0 Minimization
48(3)
2.3 Relaxing the Sparse Recovery Problem
51(11)
2.3.1 Convex Functions
51(3)
2.3.2 A Convex Surrogate for the l0 Norm: the l1 Norm
54(1)
2.3.3 A Simple Test of l0 Minimization
55(5)
2.3.4 Sparse Error Correction via Logan's Phenomenon
60(2)
2.4 Summary
62(1)
2.5 Notes
63(1)
2.6 Exercises
64(5)
3 Convex Methods for Sparse Signal Recovery
69(63)
3.1 Why Does l1 Minimization Succeed? Geometric Intuitions
69(3)
3.2 A First Correctness Result for Incoherent Matrices
72(10)
3.2.1 Coherence of a Matrix
72(2)
3.2.2 Correctness of l1 Minimization
74(3)
3.2.3 Constructing an Incoherent Matrix
77(2)
3.2.4 Limitations of Incoherence
79(3)
3.3 Towards Stronger Correctness Results
82(9)
3.3.1 The Restricted Isometry Property (RIP)
82(2)
3.3.2 Restricted Strong Convexity Condition
84(4)
3.3.3 Success of l1 Minimization under RIP
88(3)
3.4 Matrices with Restricted Isometry Property
91(10)
3.4.1 The Johnson--Lindenstrauss Lemma
91(3)
3.4.2 RIP of Gaussian Random Matrices
94(5)
3.4.3 RIP of Non-Gaussian Matrices
99(2)
3.5 Noisy Observations or Approximate Sparsity
101(11)
3.5.1 Stable Recovery of Sparse Signals
103(7)
3.5.2 Recovery of Inexact Sparse Signals
110(2)
3.6 Phase Transitions in Sparse Recovery
112(15)
3.6.1 Phase Transitions: Main Conclusions
114(1)
3.6.2 Phase Transitions via Coefficient-Space Geometry
115(3)
3.6.3 Phase Transitions via Observation-Space Geometry
118(1)
3.6.4 Phase Transitions in Support Recovery
119(8)
3.7 Summary
127(1)
3.8 Notes
128(1)
3.9 Exercises
128(4)
4 Convex Methods for Low-Rank Matrix Recovery
132(59)
4.1 Motivating Examples of Low-Rank Modeling
132(5)
4.1.1 3D Shape from Photometric Measurements
132(2)
4.1.2 Recommendation Systems
134(2)
4.1.3 Euclidean Distance Matrix Embedding
136(1)
4.1.4 Latent Semantic Analysis
136(1)
4.2 Representing Low-Rank Matrix via SVD
137(5)
4.2.1 Singular Vectors via Nonconvex Optimization
138(3)
4.2.2 Best Low-Rank Matrix Approximation
141(1)
4.3 Recovering a Low-Rank Matrix
142(21)
4.3.1 General Rank Minimization Problems
142(1)
4.3.2 Convex Relaxation of Rank Minimization
143(3)
4.3.3 Nuclear Norm as a Convex Envelope of Rank
146(1)
4.3.4 Success of Nuclear Norm under Rank-RIP
147(6)
4.3.5 Rank-RIP of Random Measurements
153(5)
4.3.6 Noise, Inexact Low Rank, and Phase Transition
158(5)
4.4 Low-Rank Matrix Completion
163(20)
4.4.1 Nuclear Norm Minimization for Matrix Completion
164(1)
4.4.2 Algorithm via Augmented Lagrange Multiplier
165(3)
4.4.3 When Does Nuclear Norm Minimization Succeed?
168(2)
4.4.4 Proving Correctness of Nuclear Norm Minimization
170(11)
4.4.5 Stable Matrix Completion with Noise
181(2)
4.5 Summary
183(1)
4.6 Notes
184(1)
4.7 Exercises
185(6)
5 Decomposing Low-Rank and Sparse Matrices
191(42)
5.1 Robust PCA and Motivating Examples
191(6)
5.1.1 Problem Formulation
191(2)
5.1.2 Matrix Rigidity and Planted Clique
193(1)
5.1.3 Applications of Robust PCA
194(3)
5.2 Robust PCA via Principal Component Pursuit
197(8)
5.2.1 Convex Relaxation for Sparse Low-Rank Separation
197(1)
5.2.2 Solving PCP via Alternating Directions Method
198(2)
5.2.3 Numerical Simulations and Experiments of PCP
200(5)
5.3 Identifiability and Exact Recovery
205(14)
5.3.1 Identifiability Conditions
205(2)
5.3.2 Correctness of Principal Component Pursuit
207(10)
5.3.3 Some Extensions to the Main Result
217(2)
5.4 Stable Principal Component Pursuit with Noise
219(4)
5.5 Compressive Principal Component Pursuit
223(2)
5.6 Matrix Completion with Corrupted Entries
225(2)
5.7 Summary
227(1)
5.8 Notes
228(1)
5.9 Exercises
229(4)
6 Recovering General Low-Dimensional Models
233(30)
6.1 Concise Signal Models
233(8)
6.1.1 Atomic Sets and Examples
234(3)
6.1.2 Atomic Norm Minimization for Structured Signals
237(4)
6.2 Geometry, Measure Concentration, and Phase Transition
241(14)
6.2.1 Success Condition as Two Nonintersecting Cones
241(2)
6.2.2 Intrinsic Volumes and Kinematic Formula
243(4)
6.2.3 Statistical Dimension and Phase Transition
247(2)
6.2.4 Statistical Dimension of Descent Cone of the l1 Norm
249(4)
6.2.5 Phase Transition in Decomposing Structured Signals
253(2)
6.3 Limitations of Convex Relaxation
255(5)
6.3.1 Suboptimality of Convex Relaxation for Multiple Structures
255(2)
6.3.2 Intractable Convex Relaxation for High-Order Tensors
257(1)
6.3.3 Lack of Convex Relaxation for Bilinear Problems
258(1)
6.3.4 Nonlinear Low-Dimensional Structures
259(1)
6.3.5 Return of Nonconvex Formulation and Optimization
259(1)
6.4 Notes
260(1)
6.5 Exercises
260(3)
7 Nonconvex Methods for Low-Dimensional Models
263(40)
7.1 Introduction
263(8)
7.1.1 Nonlinearity, Symmetry, and Nonconvexity
264(3)
7.1.2 Symmetry and the Global Geometry of Optimization
267(2)
7.1.3 A Taxonomy of Symmetric Nonconvex Problems
269(2)
7.2 Nonconvex Problems with Rotational Symmetries
271(12)
7.2.1 Minimal Example: Phase Retrieval with One Unknown
271(1)
7.2.2 Generalized Phase Retrieval
272(4)
7.2.3 Low-Rank Matrix Recovery
276(6)
7.2.4 Other Nonconvex Problems with Rotational Symmetry
282(1)
7.3 Nonconvex Problems with Discrete Symmetries
283(11)
7.3.1 Minimal Example: Dictionary Learning with One-Sparsity
283(3)
7.3.2 Dictionary Learning
286(3)
7.3.3 Sparse Blind Deconvolution
289(3)
7.3.4 Other Nonconvex Problems with Discrete Symmetry
292(2)
7.4 Notes and Open Problems
294(3)
7.5 Exercises
297(6)
Part II Computation for Large-Scale Problems
303(116)
8 Convex Optimization for Structured Signal Recovery
305(60)
8.1 Challenges and Opportunities
306(2)
8.2 Proximal Gradient Methods
308(10)
8.2.1 Convergence of Gradient Descent
308(2)
8.2.2 From Gradient to Proximal Gradient
310(4)
8.2.3 Proximal Gradient for the Lasso and Stable PCP
314(2)
8.2.4 Convergence of Proximal Gradient
316(2)
8.3 Accelerated Proximal Gradient Methods
318(9)
8.3.1 Acceleration via Nesterov's Method
319(3)
8.3.2 APG for Basis Pursuit Denoising
322(1)
8.3.3 APG for Stable Principal Component Pursuit
322(1)
8.3.4 Convergence of APG
323(3)
8.3.5 Further Developments on Acceleration
326(1)
8.4 Augmented Lagrange Multipliers
327(7)
8.4.1 ALM for Basis Pursuit
332(1)
8.4.2 ALM for Principal Component Pursuit
332(1)
8.4.3 Convergence of ALM
333(1)
8.5 Alternating Direction Method of Multipliers
334(12)
8.5.1 ADMM for Principal Component Pursuit
335(1)
8.5.2 Monotone Operators
336(4)
8.5.3 Convergence of ALM and ADMM
340(6)
8.6 Leveraging Problem Structures for Better Scalability
346(12)
8.6.1 Frank--Wolfe for Structured Constraint Set
347(4)
8.6.2 Frank--Wolfe for Stable Matrix Completion
351(1)
8.6.3 Connection to Greedy Methods for Sparsity
352(4)
8.6.4 Stochastic Gradient Descent for Finite Sum
356(2)
8.7 Notes
358(2)
8.8 Exercises
360(5)
9 Nonconvex Optimization for High-Dimensional Problems
365(54)
9.1 Challenges and Opportunities
366(6)
9.1.1 Finding Critical Points via Gradient Descent
367(3)
9.1.2 Finding Critical Points via Newton's Method
370(2)
9.2 Cubic Regularization of Newton's Method
372(5)
9.2.1 Convergence to Second-Order Stationary Points
373(4)
9.2.2 More Scalable Solution to the Subproblem
377(1)
9.3 Gradient and Negative Curvature Descent
377(8)
9.3.1 Hybrid Gradient and Negative Curvature Descent
378(2)
9.3.2 Computing Negative Curvature via the Lanczos Method
380(3)
9.3.3 Overall Complexity in First-Order Oracle
383(2)
9.4 Negative Curvature and Newton Descent
385(10)
9.4.1 Curvature Guided Newton Descent
385(4)
9.4.2 Inexact Negative Curvature and Newton Descent
389(4)
9.4.3 Overall Complexity in First-Order Oracle
393(2)
9.5 Gradient Descent with Small Random Noise
395(12)
9.5.1 Diffusion Process and Laplace's Method
395(3)
9.5.2 Noisy Gradient with Langevin Monte Carlo
398(2)
9.5.3 Negative Curvature Descent with Random Noise
400(5)
9.5.4 Complexity of Perturbed Gradient Descent
405(2)
9.6 Leveraging Symmetry Structure: Generalized Power Iteration
407(6)
9.6.1 Power Iteration for Computing Singular Vectors
407(2)
9.6.2 Complete Dictionary Learning
409(1)
9.6.3 Optimization over Stiefel Manifolds
410(1)
9.6.4 Fixed Point of a Contraction Mapping
411(2)
9.7 Notes
413(1)
9.8 Exercises
414(5)
Part III Applications to Real-World Problems
419(154)
10 Magnetic Resonance Imaging
421(19)
10.1 Introduction
421(1)
10.2 Formation of MR Images
422(5)
10.2.1 Basic Physics
422(2)
10.2.2 Selective Excitation and Spatial Encoding
424(1)
10.2.3 Sampling and Reconstruction
425(2)
10.3 Sparsity and Compressive Sampling of MR Images
427(6)
10.3.1 Sparsity of MR Images
427(3)
10.3.2 Compressive Sampling of MR Images
430(3)
10.4 Algorithms for MR Image Recovery
433(4)
10.5 Notes
437(1)
10.6 Exercises
438(2)
11 Wideband Spectrum Sensing
440(16)
11.1 Introduction
440(2)
11.1.1 Wideband Communications
440(1)
11.1.2 Nyquist Sampling and Beyond
441(1)
11.2 Wideband Interferer Detection
442(5)
11.2.1 Conventional Scanning Approaches
443(2)
11.2.2 Compressive Sensing in the Frequency Domain
445(2)
11.3 System Implementation and Performance
447(8)
11.3.1 Quadrature Analog to Information Converter
448(1)
11.3.2 A Prototype Circuit Implementation
449(5)
11.3.3 Recent Developments in Hardware Implementation
454(1)
11.4 Notes
455(1)
12 Scientific Imaging Problems
456(12)
12.1 Introduction
456(1)
12.2 Data Model and Optimization Formulation
456(3)
12.3 Symmetry in Short-and-Sparse Deconvolution
459(2)
12.4 Algorithms for Short-and-Sparse Deconvolution
461(4)
12.4.1 Alternating Descent Method
462(1)
12.4.2 Additional Heuristics for Highly Coherent Problems
463(2)
12.4.3 Computational Examples
465(1)
12.5 Extensions: Multiple Motifs
465(2)
12.6 Exercises
467(1)
13 Robust Face Recognition
468(14)
13.1 Introduction
468(2)
13.2 Classification Based on Sparse Representation
470(3)
13.3 Robustness to Occlusion or Corruption
473(4)
13.4 Dense Error Correction with the Cross and Bouquet
477(2)
13.5 Notes
479(1)
13.6 Exercises
480(2)
14 Robust Photometric Stereo
482(17)
14.1 Introduction
482(1)
14.2 Photometric Stereo via Low-Rank Matrix Recovery
483(6)
14.2.1 Lambertian Surface under Directional Lights
484(2)
14.2.2 Modeling Shadows and Specularities
486(3)
14.3 Robust Matrix Completion Algorithm
489(2)
14.4 Experimental Evaluation
491(6)
14.4.1 Quantitative Evaluation with Synthetic Images
492(4)
14.4.2 Qualitative Evaluation with Real Images
496(1)
14.5 Notes
497(2)
15 Structured Texture Recovery
499(27)
15.1 Introduction
499(1)
15.2 Low-Rank Textures
500(2)
15.3 Structured Texture Inpainting
502(5)
15.4 Transform-Invariant Low-Rank Textures
507(5)
15.4.1 Deformed and Corrupted Low-Rank Textures
507(2)
15.4.2 The TILT Algorithm
509(3)
15.5 Applications of TILT
512(11)
15.5.1 Rectifying Planar Low-Rank Textures
513(1)
15.5.2 Rectifying Generalized Cylindrical Surfaces
514(3)
15.5.3 Calibrating Camera Lens Distortion
517(6)
15.6 Notes
523(3)
16 Deep Networks for Classification
526(47)
16.1 Introduction
526(6)
16.1.1 Deep Learning in a Nutshell
527(2)
16.1.2 The Practice of Deep Learning
529(2)
16.1.3 Challenges with Nonlinearity and Discriminativeness
531(1)
16.2 Desiderata for Learning Discriminative Representation
532(10)
16.2.1 Measure of Compactness for a Representation
533(3)
16.2.2 Principle of Maximal Coding Rate Reduction
536(1)
16.2.3 Properties of the Rate Reduction Function
537(2)
16.2.4 Experiments on Real Data
539(3)
16.3 Deep Networks from First Principles
542(18)
16.3.1 Deep Networks from Optimizing Rate Reduction
542(6)
16.3.2 Convolutional Networks from Invariant Rate Reduction
548(7)
16.3.3 Simulations and Experiments
555(5)
16.4 Guaranteed Manifold Classification by Deep Networks
560(5)
16.4.1 Minimal Case: Two 1D Submanifolds
560(2)
16.4.2 Problem Formulation and Analysis
562(2)
16.4.3 Main Conclusion
564(1)
16.5 Epilogue: Open Problems and Future Directions
565(5)
16.6 Exercises
570(3)
Appendices
573(60)
Appendix A Facts from Linear Algebra and Matrix Analysis
575(23)
Appendix B Convex Sets and Functions
598(10)
Appendix C Optimization Problems and Optimality Conditions
608(6)
Appendix D Methods for Optimization
614(12)
Appendix E Facts from High-Dimensional Statistics
626(7)
References 633(38)
List of Symbols 671(3)
Index 674
John Wright is an Associate Professor in the Electrical Engineering Department and the Data Science Institute at Columbia University. Yi Ma is a Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He is a Fellow of the IEEE, ACM, and SIAM.