|
Part A Hyperarithmetic Sets |
|
|
1 | (112) |
|
Chapter I Constructive Ordinals and Π11 Sets |
|
|
3 | (19) |
|
|
3 | (5) |
|
|
8 | (2) |
|
3 Effective Transfinite Recursion |
|
|
10 | (5) |
|
|
15 | (3) |
|
5 Ordinal Analysis of Π11 Sets |
|
|
18 | (4) |
|
Chapter II The Hyperarithmetic Hierarchy |
|
|
22 | (30) |
|
1 Hyperarithmetic Implies Δ11 |
|
|
22 | (6) |
|
2 Δ11 Implies Hyperarithmetic |
|
|
28 | (4) |
|
3 Selection and Reduction |
|
|
32 | (5) |
|
|
37 | (5) |
|
5 Hyperarithmetic Reducibility |
|
|
42 | (4) |
|
6 Incomparable Hyperdegrees Via Measure |
|
|
46 | (2) |
|
|
48 | (4) |
|
Chapter III Σ11 Predicates of Reals |
|
|
52 | (36) |
|
|
52 | (3) |
|
2 Unique Notations for Ordinals |
|
|
55 | (4) |
|
3 Hyperarithmetic Quantifiers |
|
|
59 | (3) |
|
4 The Ramified Analytic Hierarchy |
|
|
62 | (8) |
|
|
70 | (1) |
|
6 Perfect Subsets of Σ11 Sets |
|
|
71 | (3) |
|
7 Kreisel's Basis Theorem |
|
|
74 | (2) |
|
|
76 | (5) |
|
|
81 | (7) |
|
Chapter IV Measure and Forcing |
|
|
88 | (25) |
|
1 Measure-Theoretic Uniformity |
|
|
88 | (4) |
|
2 Measure-Theoretic Basis Theorems |
|
|
92 | (2) |
|
|
94 | (4) |
|
|
98 | (5) |
|
|
103 | (4) |
|
|
107 | (6) |
|
|
113 | (36) |
|
Chapter V Metarecursive Enumerability |
|
|
115 | (20) |
|
1 Fundamentals of Metarecursion |
|
|
115 | (6) |
|
2 Metafinite Computations |
|
|
121 | (3) |
|
3 Relative Metarecursiveness |
|
|
124 | (5) |
|
|
129 | (6) |
|
Chapter VI Hyperregularity and Priority |
|
|
135 | (14) |
|
|
135 | (3) |
|
|
138 | (8) |
|
|
146 | (3) |
|
|
149 | (82) |
|
Chapter VII Admissibility and Regularity |
|
|
151 | (24) |
|
|
151 | (6) |
|
|
157 | (4) |
|
3 Relative α-Recursiveness |
|
|
161 | (4) |
|
4 Existence of Regular Sets |
|
|
165 | (2) |
|
|
167 | (8) |
|
Chapter VIII Priority Arguments |
|
|
175 | (29) |
|
|
175 | (3) |
|
2 α-Finite Injury and Tameness |
|
|
178 | (6) |
|
3 Dynamic Versus Fine-Structure |
|
|
184 | (10) |
|
4 Σ1 Doing the Work of Σ2 |
|
|
194 | (10) |
|
Chapter IX Splitting, Density and Beyond |
|
|
204 | (27) |
|
1 Shore's Splitting Theorem |
|
|
204 | (3) |
|
|
207 | (5) |
|
|
212 | (4) |
|
4 Preliminaries to α-Density |
|
|
216 | (2) |
|
5 Shore's Density Theorem |
|
|
218 | (9) |
|
|
227 | (4) |
|
|
231 | (108) |
|
Chapter X E-Closed Structures |
|
|
233 | (26) |
|
1 Partial E-Recursive Functions |
|
|
233 | (4) |
|
|
237 | (5) |
|
|
242 | (2) |
|
|
244 | (5) |
|
|
249 | (10) |
|
Chapter XI Forcing Computations to Converge |
|
|
259 | (24) |
|
|
259 | (6) |
|
2 Countably Closed Forcing |
|
|
265 | (5) |
|
3 Enumerable Forcing Relations |
|
|
270 | (3) |
|
4 Countable-Chain-Condition Forcing |
|
|
273 | (6) |
|
5 Normann Selection and Singular Cardinals |
|
|
279 | (2) |
|
|
281 | (2) |
|
Chapter XII Selection and k-Sections |
|
|
283 | (26) |
|
|
284 | (3) |
|
|
287 | (3) |
|
|
290 | (9) |
|
4 Harrington's Plus-Two Theorem |
|
|
299 | (5) |
|
5 Selection with Additional Predicates |
|
|
304 | (5) |
|
Chapter XIII E-Recursively Enumerable Degrees |
|
|
309 | (30) |
|
|
309 | (4) |
|
2 Projecta and Cofinalities |
|
|
313 | (12) |
|
|
325 | (3) |
|
4 Post's Problem for E-Recursion |
|
|
328 | (5) |
|
5 Slaman's Splitting and Density Theorems |
|
|
333 | (6) |
Bibliography |
|
339 | (4) |
Subject Index |
|
343 | |