Muutke küpsiste eelistusi

E-raamat: Image Texture Analysis: Foundations, Models and Algorithms

  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jun-2019
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030137731
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-Jun-2019
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030137731
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. Divided into three parts, the book opens with a review of existing models and algorithms for image texture analysis, before delving into the details of the K-views model. The work then concludes with a discussion of popular deep learning methods for image texture analysis.

Topics and features: provides self-test exercises in every chapter; describes the basics of image texture, texture features, and image texture classification and segmentation; examines a selection of widely-used methods for measuring and extracting texture features, and various algorithms for texture classification; explains the concepts of dimensionality reduction and sparse representation; discusses view-based approaches to classifying images; introduces the template for the K-views algorithm, as well as a range of variants of this algorithm; reviews several neural network models for deep machine learning, and presents a specific focus on convolutional neural networks.









This introductory text on image texture analysis is ideally suitable for senior undergraduate and first-year graduate students of computer science, who will benefit from the numerous clarifying examples provided throughout the work.
Part I: Existing Models and Algorithms for Image Texture.- Image
Texture, Texture Features, and Image Texture Classification and
Segmentation.- Texture Features and Image Texture Models.- Algorithms for
Image Texture Classification.- Dimensionality Reduction and Sparse
Representation.- Part II: The K-Views Models and Algorithms.- Basic Concept
and Models of the K-Views.- Using Datagram in the K-Views Model.-
Features-Based K-Views Model.- Advanced K-Views Algorithms.- Part III: Deep
Machine Learning Models for Image Texture Analysis.- Foundations of Deep
Machine Learning in Neural Networks.- Convolutional Neural Networks and
Texture Classification.
Dr. Chih-Cheng Hung is a Tenured Professor of Computer Science in the College of Computing and Software Engineering at Kennesaw State University, where he serves as the Director of the Center for Machine Vision and Security Research. He also holds the position of YinDu Scholar at Anyang Normal University, China.





Dr. Enmin Song is a Professor and Director of the Department of Computer Science and Application at Huazhong University of Science and Technology, Wuhan, China.





Dr. Yihua Lan is an Associate Professor of Computer Science in the School of Computer and Information Technology at Nanyang Normal University, China.