Muutke küpsiste eelistusi

E-raamat: Indirect Estimation of Migration: Methods for Dealing with Irregular, Inadequate, and Missing Data

  • Formaat - PDF+DRM
  • Hind: 108,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This unique book introduces an essential element in applied demographic analysis: a tool-kit for describing, smoothing, repairing and - in instances of totally missing data - inferring directional migration flows. Migration rates combine with fertility and mortality rates to shape the evolution of human populations. Demographers have found that all three generally exhibit persistent regularities in their age and spatial patterns, when changing levels are controlled for. Drawing on statistical descriptions of such regularities, it is often possible to improve the quality of the available data by smoothing irregular data, imposing the structures of borrowed and related data on unreliable data, and estimating missing data by indirect methods. Model migration schedules and log-linear models are presented as powerful methods for helping population researchers, historical demographers, geographers, and migration analysts work with the data available to them.

This unique book introduces an essential element in applied demographic analysis: a tool-kit for describing, smoothing, repairing and, in instances of totally missing data, inferring directional migration flows.

Arvustused

From the reviews:

The book contains much of interest to established researchers, but it should also prove helpful to those new to the area of migration modelling given its lucid descriptions of methods, simple examples and an accompanying website which contains data and programs. this is an impressive volume. The Indirect Estimation of Migration should provide an excellent reference for any researcher or practitioner involved in migration and projections research who has to deal with imperfect migration data. (Tom Wilson, Journal of Population Research, Vol. 27, 2010)

1 Introduction
1(8)
1.1 Introduction
1(1)
1.2 Models
2(3)
1.2.1 Modeling Age Patterns of Migration
3(1)
1.2.2 Modeling Spatial Patterns of Migration
3(1)
1.2.3 A Model-Based Approach to Migration Estimation
4(1)
1.3 Data
5(3)
1.3.1 Observed Data: Data Types
6(1)
1.3.2 Using Auxiliary Data
6(2)
1.3.3 The Case of No Migration Data
8(1)
1.4 Outline of Book
8(1)
2 Describing Age Structures of Migration
9(20)
2.1 Introduction
9(1)
2.2 Age Patterns of Migration
9(6)
2.2.1 Migration Rates and Migration Schedules
10(2)
2.2.2 The Model Migration Schedule
12(3)
2.3 Comparative Analysis
15(6)
2.3.1 An Example: The Swedish Case Study
16(1)
2.3.2 Families of Schedules: Toward a Typology
17(4)
2.4 Related Topics
21(5)
2.4.1 Sensitivity Analysis
21(1)
2.4.2 The 1-Year/5-Year Problem
22(2)
2.4.3 The Age Composition of Migrants
24(2)
2.5 Summary and Discussion
26(1)
2.6 Appendix: Estimation of Model Schedule Parameters
27(2)
3 Describing Spatial Structures of Migration
29(18)
3.1 Introduction
29(2)
3.2 Representing Spatial Structures of Migration: The Log-Linear Model
31(5)
3.2.1 Overview
31(1)
3.2.2 The Spatial Interaction Model and the Log-Linear Model
32(1)
3.2.3 Numerical Examples of the Log-Linear Decomposition
33(2)
3.2.4 The "Independence" Model
35(1)
3.3 Biproportional Adjustment and the Method of Offsets
36(3)
3.4 Introducing Additional Structures
39(5)
3.4.1 Overview
39(1)
3.4.2 Descriptive Analysis
40(2)
3.4.3 Unsaturated Log-Linear Model Analysis
42(2)
3.5 Summary and Discussion
44(3)
4 Smoothing Age and Spatial Patterns
47(40)
4.1 Introduction
47(1)
4.2 Smoothing Irregular Migration Data: Census 2000 Full Sample
48(6)
4.3 Smoothing Irregular and Inadequate Migration Data: Census 2000 PUMS 1% Sample
54(5)
4.4 Smoothing Data of Low Reliability: ACS PUMS Data
59(13)
4.4.1 A Comparison of ACS PUMS and Census 2000 Migration Data
60(3)
4.4.2 The Reliability of ACS PUMS Estimates
63(3)
4.4.3 Results for the State Data
66(6)
4.5 Log-Linear Smoothing of Spatial and Age Patterns in Migration Flow Tables
72(12)
4.5.1 Spatial Patterns of Migration between the Nine U.S. Divisions
73(5)
4.5.2 Age Patterns of 1995-2000 Migration from Colorado to Other U.S. States and Divisions
78(2)
4.5.3 Age Patterns of ACS 2004 Migration between States in the U.S. West Region
80(4)
4.5.4 Summary
84(1)
4.6 Summary and Discussion
84(3)
5 Imposing Age and Spatial Patterns
87(34)
5.1 Introduction
87(2)
5.2 The Regional Membership Method for Imposing Migration Age Structures
89(6)
5.3 The Family Membership Method for Imposing Migration Age Structures
95(8)
5.3.1 Defining Families of Out-Migration Flows
96(2)
5.3.2 The Family Membership Method Applied to the Less Populated States
98(5)
5.4 Imposing Migration Age Structures with ACS Data
103(11)
5.4.1 The Temporal Aggregation Method for Imposing Migration Age Structures
103(5)
5.4.2 The Imposing Methods Applied to the More Populated States
108(2)
5.4.3 The Imposing Methods Applied to the Less Populated States
110(4)
5.5 Imposing Spatial Migration Patterns
114(4)
5.5.1 Data
114(1)
5.5.2 Modeling Origin-Destination Migration Flows with Prior Information
115(3)
5.6 Summary and Discussion
118(3)
6 Inferring Age and Spatial Patterns
121(34)
6.1 Introduction
121(1)
6.2 Age Compositions of Out-Migrants
121(12)
6.2.1 Data
122(1)
6.2.2 Relationship Between Population Age Structures and Migration Age Structures
123(3)
6.2.3 Typologies of Model Migration Schedules
126(4)
6.2.4 Prediction of Migration Family Membership from Population Data
130(2)
6.2.5 Summary
132(1)
6.3 Inferring Historical Spatial Patterns Using Infant Migration Estimates
133(9)
6.3.1 Estimates Based on Infant Migration Data: The Regression Method
134(2)
6.3.2 Estimates Based on Infant Migration Data: The Log-Linear Method
136(3)
6.3.3 Application to Historical Data
139(3)
6.4 Inferring Current Spatial Patterns Using Combined Data Sets
142(7)
6.4.1 Description of Migration Flows Collected from Different Data Sources
142(4)
6.4.2 Comparison of Migration Flows Collected from Different Data Sources
146(3)
6.4.3 Prediction of ACS 2005 and 2006 Spatial Patterns Using IRS Data
149(1)
6.5 Summary and Discussion
149(6)
7 Conclusion
155(4)
References 159(6)
Index 165