Muutke küpsiste eelistusi

E-raamat: Introduction to Machine Learning with Security: Theory and Practice Using Python in the Cloud

  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides an introduction to machine learning, security and cloud computing, from a conceptual level, along with their usage with underlying infrastructure. The authors emphasize fundamentals and best practices for using AI and ML in a dynamic infrastructure with cloud computing and high security, preparing readers to select and make use of appropriate techniques. Important topics are demonstrated using real applications and case studies.  

Introduction to Machine Learning.- Foundations of Machine Learning.-
Deep Learning and cloud computing.- Cloud Computing Concepts.- Practical
Aspects in Machine Learning.- Artificial Intelligence and Information
Security.- Examples of Analytics in the Cloud.- A case study of Data
Collection and Analytics in the Cloud.- Future trends in Hardware based
AI and ML.
Pramod Gupta has more than 20 years of experience as a researcher and academician in various organizations including work with NASA, GE, VISA, and University of California and startups. He has a PhD from McMaster University in Electrical and Computer Engineering with specialization in Neuro-Control of Robotic Manipulators.  He has more than 40 publications on these subjects. His research areas include Neural Networks, Machine Learning, Artificial Intelligence, Data Modeling and Analytics and Data mining.  Presently, he is an Adjunct Faculty and working as an independent data science consultant. 





Naresh K. Sehgal is a CTO at the Deeply Human AI. Before that he worked at NovaSignal for 3 years and at Intel for 31 years in various Engineering and Management roles. Naresh has earned his B.E. from Punjab Engineering College, M.S. and Ph.D. from Syracuse University. He also taught a Cloud Computing class at Santa Clara University, where he earned an MBA.





John M. Acken is a research faculty member in the Electrical and Computer Engineering Department, Portland State University, Portland, OR.  John received his BS and MS in Electrical Engineering from Oklahoma State University and Ph. D. in Electrical Engineering from Stanford University. His projects include technology and devices for information security and identity authentication. John has worked as an Electrical Engineer and Manager at several companies, including the US Army, Sandia National Labs in Albuquerque, New Mexico and Intel in Santa Clara, CA.  Johns time in the US Army was in the Army Security Agency, a branch of NSA during the Vietnam War.