Muutke küpsiste eelistusi

E-raamat: Iterative Optimizers: Difficulty Measures and Benchmarks

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-Apr-2019
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119612407
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-Apr-2019
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119612407
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Almost every month, a new optimization algorithm is proposed, often accompanied by the claim that it is superior to all those that came before it. However, this claim is generally based on the algorithm’s performance on a specific set of test cases, which are not necessarily representative of the types of problems the algorithm will face in real life.

This book presents the theoretical analysis and practical methods (along with source codes) necessary to estimate the difficulty of problems in a test set, as well as to build bespoke test sets consisting of problems with varied difficulties.

The book formally establishes a typology of optimization problems, from which a reliable test set can be deduced. At the same time, it highlights how classic test sets are skewed in favor of different classes of problems, and how, as a result, optimizers that have performed well on test problems may perform poorly in real life scenarios.

Preface ix
Introduction xi
Chapter 1 Some Definitions
1(14)
1.1 Continuous case vs discrete case: when a theorem no longer holds
1(1)
1.2 Landscape
2(13)
1.2.1 Size of a landscape
3(1)
1.2.2 Adjacency and path
4(1)
1.2.3 Minimum
5(1)
1.2.4 Modality
6(1)
1.2.5 Plateau
7(1)
1.2.6 Basin of attraction
8(3)
1.2.7 Domain
11(1)
1.2.8 Structure
11(4)
Chapter 2 Difficulty of the Difficulty
15(30)
2.1 Effort and budgets
15(2)
2.2 Acceptable solution
17(4)
2.3 Difficulty vs complexity
21(1)
2.4 Normalized roughness
22(2)
2.5 Measure δγ, ε
24(1)
2.6 Measure δ0
24(2)
2.7 Measures non-NisB
26(15)
2.7.1 Deceptive vs disappointing
28(1)
2.7.2 Measure consistency
28(13)
2.8 Perceived difficulty
41(4)
Chapter 3 Landscape Typology
45(20)
3.1 Reliable functions, misleading and neutral
46(1)
3.1.1 Dimension D = 0
47(5)
3.2 Plateaus
52(7)
3.2.1 Dimension D = 1
52(5)
3.2.2 Dimension D ≥ 2
57(2)
3.3 Multimodal functions
59(3)
3.3.1 Functions with single global minimum
59(1)
3.3.2 Functions with several global minima
60(2)
3.4 Unimodal functions
62(3)
Chapter 4 LandGener
65(14)
4.1 Examples
66(7)
4.2 Generated files
73(1)
4.3 Regular landscape
74(5)
Chapter 5 Test Cases
79(6)
5.1 Structure of a representative test case
79(3)
5.2 CEC 2005
82(1)
5.3 CEC 20II
82(3)
Chapter 6 Difficulty vs Dimension
85(10)
6.1 Rosenbrock function
85(1)
6.2 Griewank function
86(1)
6.3 Example of the normalized paraboloid
87(4)
6.4 Normalized bi-paraboloid
91(3)
6.5 Difficulty δ0 and dimension
94(1)
Chapter 7 Exploitation and Exploration vs Difficulty
95(12)
7.1 Exploitation, an incomplete definition
96(1)
7.2 Rigorous definitions
97(7)
7.3 Balance profile
104(3)
Chapter 8 The Explo2 Algorithm
107(18)
8.1 The algorithm
108(11)
8.1.1 Influence of the balance profile
113(6)
8.2 Subjective numerical summary of a distribution of results
119(6)
Chapter 9 Balance and Perceived Difficulty
125(6)
9.1 Constant profile-based experiments
125(2)
9.2 Calculated difficulty vs perceived difficulty
127(4)
Appendix 131(50)
References 181(4)
Index 185
Maurice Clerc is recognized as one of the foremost particle swarm optimization specialists in the world. A former France Telecom Research and Development engineer, he maintains his research activities as a consultant for optimization projects.