Muutke küpsiste eelistusi

E-raamat: Materials and Processes for Next Generation Lithography

Volume editor (Research Engineer, Milliken & Company, Spartanb), Volume editor (Senior Lecturer, School of Chemical Engineering, Edgbaston, Birmingham, Senior Research Fellow of the Science City Research Alliance, University of Warwick, University of Birmingham, UK)
  • Formaat: EPUB+DRM
  • Sari: Frontiers of Nanoscience
  • Ilmumisaeg: 08-Nov-2016
  • Kirjastus: Elsevier / The Lancet
  • Keel: eng
  • ISBN-13: 9780081003589
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 163,80 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Frontiers of Nanoscience
  • Ilmumisaeg: 08-Nov-2016
  • Kirjastus: Elsevier / The Lancet
  • Keel: eng
  • ISBN-13: 9780081003589
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

These developments in both the industrial and the academic lithography arenas have led to the proliferation of numerous novel approaches to resist chemistry and ingenious extensions of traditional photopolymers. Currently most texts in this area focus on either lithography with perhaps one or two chapters on resists, or on traditional resist materials with relatively little consideration of new approaches.

This book therefore aims to bring together the worlds foremost resist development scientists from the various communities to produce in one place a definitive description of the many approaches to lithography fabrication.

  • Assembles up-to-date information from the world’s premier resist chemists and technique development lithographers on the properties and capabilities of the wide range of resist materials currently under investigation
  • Includes information on processing and metrology techniques
  • Brings together multiple approaches to litho pattern recording from academia and industry in one place

Muu info

Including information on processing and metrology techniques, this book brings together the world's foremost resist development scientists from various communities to produce a definitive description of the many approaches to lithography fabrication
Contributors xv
Preface xix
Acknowledgments xxi
List of abbreviations
xxiii
Chapter 1 Overview of materials and processes for lithography
1(90)
Richard A. Lawson
Alex P.G. Robinson
1.1 Introduction
2(3)
1.2 Overview of Lithography Process
5(2)
1.3 Lithographic Exposure Sources and Processes
7(11)
1.3.1 Ultraviolet Lithography
7(1)
1.3.2 DUV Lithography---248 nm and 193 nm, Immersion, and Multiple Patterning
8(4)
1.3.3 Extreme Ultraviolet Lithography
12(1)
1.3.4 E-Beam Lithography
13(2)
1.3.5 Other Lithography Processes---Ion Beam, Scanning Probe, and Nanoimprint
15(3)
1.4 Characterization and Figures of Merit for Resists
18(8)
1.5 Resist Materials and Chemistry
26(18)
1.5.1 Nonchemically Amplified Resists
26(2)
1.5.2 Chemically Amplified Resists
28(3)
1.5.3 Resist Physical Properties and Etch Resistance
31(2)
1.5.4 Photoacid Generator Chemistry and Physics
33(5)
1.5.5 Molecular Resists and Inorganic Resists
38(6)
1.6 Challenges in Modern Resist Design
44(16)
1.6.1 Exposure Statistics and Shot Noise
45(1)
1.6.2 Photoacid Diffusion
46(5)
1.6.3 Resolution, Line Edge Roughness, and Sensitivity Trade-Off
51(3)
1.6.4 Pattern Collapse
54(6)
1.7 Conclusions
60(31)
References
61(30)
Chapter 2 Molecular excitation and relaxation of extreme ultraviolet lithography photoresists
91(24)
D. Frank Ogletree
2.1 Introduction
92(1)
2.2 Extreme Ultraviolet Molecular Excitation
93(7)
2.2.1 Atomic Photoemission
94(1)
2.2.2 Extreme Ultraviolet Sensitivity
95(2)
2.2.3 Gas-Phase Molecular Spectroscopy
97(1)
2.2.4 Molecular Photoemission
98(1)
2.2.5 Photoemission and Shake-Up
98(2)
2.2.6 Molecular Shape Resonances
100(1)
2.3 Extreme Ultraviolet Molecular Relaxation
100(4)
2.3.1 Electronic Relaxation in Atoms
100(1)
2.3.2 Resonant Photoabsorption
101(1)
2.3.3 Atomic Relaxation and Fragmentation in Molecules
102(2)
2.4 Extreme Ultraviolet Processes in Condensed Films
104(4)
2.4.1 Extreme Ultraviolet Molecular Excitation in Condensed Resist Films
104(2)
2.4.2 Molecular Relaxation in Condensed Films
106(1)
2.4.3 Reaction Cascades in Condensed Films
107(1)
2.5 Outlook and Conclusions
108(7)
2.5.1 Differences in Extreme Ultraviolet Lithography and Electron Beam Lithography
108(1)
2.5.2 Outlook and Research Needs
108(1)
Acknowledgments
109(1)
References
109(6)
Chapter 3 Theory: electron-induced chemistry
115(20)
Willem F. van Dorp
3.1 Introduction
115(2)
3.2 Mechanisms for Electron-Induced Reactions
117(5)
3.2.1 Electron Attachment
117(3)
3.2.2 Electron Impact Ionization
120(1)
3.2.3 Electron Impact Excitation
121(1)
3.3 Potential Role in Lithography
122(7)
3.3.1 Cross Section
122(3)
3.3.2 Spatial Resolution
125(2)
3.3.3 Rational Design of Novel Materials
127(2)
3.4 Conclusions
129(6)
References
130(5)
Chapter 4 EUV lithography process challenges
135(42)
Elizabeth Buitrago
Tero S. Kulmala
Roberto Fallica
Yasin Ekinci
4.1 Introduction
135(2)
4.2 EUV-IL as a Characterization and Nanopatterning Tool
137(12)
4.2.1 Extreme Ultraviolet Interference Lithography
138(1)
4.2.2 Achromatic Diffraction Grating---Based EUV-IL
138(4)
4.2.3 EUV-IL Challenges
142(4)
4.2.4 Achromatic Talbot Lithography
146(3)
4.3 Resist Material Challenges
149(20)
4.3.1 Introduction to Chemically Amplified Resists
149(1)
4.3.2 RLS Tradeoff
150(2)
4.3.3 Resist Absorption
152(2)
4.3.4 Image Blur
154(2)
4.3.5 Quantum Efficiency
156(2)
4.3.6 Acid Diffusion
158(5)
4.3.7 PEB and Development
163(2)
4.3.8 Contrast Curve
165(1)
4.3.9 Pattern Collapse
166(1)
4.3.10 Pattern Collapse Mitigation Strategies
166(3)
4.4 Conclusions
169(8)
References
170(7)
Chapter 5 EUV lithography patterning challenges
177(16)
Patrick Naulleau
5.1 Extreme Ultraviolet Lithography: Pushing Optical Lithography to the Extreme
177(6)
5.1.1 Introduction
177(2)
5.1.2 Extreme Ultraviolet Optics and Mask
179(2)
5.1.3 Sensitivity and Source Power
181(2)
5.2 Extreme Ultraviolet Resist Stochastics
183(5)
5.2.1 Multivariate Poisson Propagation Model
183(1)
5.2.2 Material Versus Photon Stochastics
184(2)
5.2.3 Comparing Current Resist Performance to Stochastic Limits
186(2)
5.3 Extreme Ultraviolet Resist Progress, a Historical Perspective
188(5)
5.3.1 Line Edge Roughness and Sensitivity
188(1)
5.3.2 Resolution Progress
188(1)
5.3.3 RLS Progress
189(1)
References
190(3)
Chapter 6 The chemistry and application of nonchemically amplified (non-CA) chain-scission resists
193(18)
Andrew K. Whittaker
6.1 Introduction
193(3)
6.2 The Ceiling Temperature
196(1)
6.3 The Chemistry of Specific Polymer Resist Systems
197(7)
6.3.1 Polymethacrylates
197(4)
6.3.2 Polysulfones
201(1)
6.3.3 Polyaldehydes
202(2)
6.3.4 Polyesters and Polycarbonates
204(1)
6.4 Summary
204(7)
References
205(6)
Chapter 7 Chemically amplified resists and acid amplifiers
211(12)
James W. Thackeray
7.1 Extreme Ultraviolet Resists
211(2)
7.2 EUV CAR Resists
213(6)
7.2.1 EUV CAR Resist Reaction Mechanism
214(1)
7.2.2 Resolution-Line Width Roughness Sensitivity Tradeoff
215(2)
7.2.3 Positive-Tone EUV CAR Resists
217(2)
7.2.4 Negative-Tone Developable Extreme Ultraviolet Resists
219(1)
7.3 Conclusion
219(4)
References
220(3)
Chapter 8 Negative-tone organic molecular resists
223(96)
Richard A. Lawson
Andreas Frommhold
Dongxu Yang
Alex P.G. Robinson
8.1 Introduction
224(2)
8.2 Fullerene Resists
226(13)
8.3 Triphenylene Resists
239(4)
8.4 Calixarene Resists
243(11)
8.5 Noria Resists
254(3)
8.6 Polyphenol Resists
257(6)
8.7 Cationic Polymerization and Cross-Linking
263(36)
8.7.1 General Information and Background
263(4)
8.7.2 FTIR Characterization of Epoxide Functionalized Molecular Resists
267(3)
8.7.3 Comparison of Epoxide (Oxirane) and Oxetane Functional Groups
270(3)
8.7.4 Effect of Number of Functional Groups and Comparison to Polymeric Resists
273(3)
8.7.5 Methods of Controlling Cationic Polymerization and/or Cross-Linking
276(12)
8.7.6 Underlayers for Epoxide Functionalized Molecular Resists
288(4)
8.7.7 Aqueous Base Developed Epoxide Molecular Resists
292(7)
8.8 Other Resists
299(9)
8.9 Summary
308(11)
References
310(9)
Chapter 9 Positive molecular resists
319(30)
Panagiotis Argitis
Veroniki P. Vidali
Dimitra Niakoula
9.1 Introduction
319(2)
9.2 General Characteristics
321(1)
9.3 Molecular Resist Families
322(16)
9.3.1 Star-Shaped Molecules
322(6)
9.3.2 Polyphenols
328(2)
9.3.3 Anthracene and Fullerene Derivatives
330(1)
9.3.4 Cycloaliphatic Derivatives
331(2)
9.3.5 Cyclic Molecules---Calixarenes and Related Structures
333(2)
9.3.6 Ladder Molecules---Noria
335(3)
9.4 Current Status, New Concepts, and Challenges
338(5)
9.5 Conclusions
343(6)
References
344(5)
Chapter 10 Mainstreaming inorganic metal-oxide resists for high-resolution lithography
349(28)
Deirdre Olynick
Adam Schwartzberg
Douglas A. Keszler
10.1 Metal-Oxide Resists
350(2)
10.1.1 Oxo-Hydroxo Nanoclusters
350(2)
10.2 Hydrogen Silsesquioxane
352(11)
10.2.1 HSQ Spin and Bake
353(3)
10.2.2 HSQ Exposure Mechanism
356(4)
10.2.3 HSQ Development Mechanism
360(2)
10.2.4 HSQ Overall Assessment
362(1)
10.3 High-Z Nanocluster Patterning
363(7)
10.3.1 HafSOx Solution Chemistry
364(1)
10.3.2 HafSOx Thin-Film Deposition, Bake, and Expose
365(1)
10.3.3 HafSOx Development
366(1)
10.3.4 HafSOx Summary
367(1)
10.3.5 Advances of Lithographic Resolution in High-Z Metal-Oxide Resists
368(2)
10.4 Metal-Oxide Nanocluster Patterning Materials---Present and Future
370(7)
References
371(6)
Chapter 11 Molecular organometallic resists for EUV (MORE)
377(44)
Brian Cardineau
11.1 Introduction
378(1)
11.2 Survey of Simple Metal Complexes
379(1)
11.3 Bismuth Compounds
380(5)
11.3.1 Synthesis of Bismuth-Phenyl Oligomers
381(3)
11.3.2 Approach 1: Noncatalytic Acid Cleavage of Bismuth-Phenyl Oligomers
384(1)
11.3.3 Approach 2: Oxidized Bismuth-Phenyl Oligomers
384(1)
11.3.4 Outgassing Results for Acetate Material
385(1)
11.4 Palladium and Platinum Compounds
385(9)
11.4.1 Platinum and Palladium Complexes With Known Photosensitive Moieties: Azide, Carbonate, and Oxalate
387(7)
11.5 Tin Compounds
394(16)
11.5.1 Sn-1 Compounds
394(7)
11.5.2 Sn-12 Clusters
401(9)
11.6 Metal Oxalate Complexes
410(3)
11.6.1 Ligand Structure
410(1)
11.6.2 Central Metal
410(2)
11.6.3 Oxalate Loading
412(1)
11.6.4 Optimization Studies and Champion Results
412(1)
11.7 Conclusions
413(8)
11.7.1 Bismuth
413(1)
11.7.2 Palladium and Platinum
414(1)
11.7.3 Tin (Sn-1)
414(1)
11.7.4 Tin (Sn-12)
414(1)
11.7.5 Chromium, Iron, and Cobalt
414(1)
References
415(6)
Chapter 12 SML electron beam resist: ultra-high aspect ratio nanolithography
421(26)
Scott M. Lewis
Guy A. DeRose
12.1 Introduction
421(2)
12.2 Photomask Production
423(1)
12.3 Electron Beam Resist Optical Properties
424(7)
12.4 SML2000 Electron Beam Performance
431(7)
12.5 Pushing the Resolution Limits
438(6)
12.6 Summary
444(3)
Acknowledgments
445(1)
References
445(2)
Chapter 13 Alternative resist approaches
447(32)
Alex P.G. Robinson
Richard A. Lawson
13.1 Introduction
447(1)
13.2 Novel Approaches for EUV
448(26)
13.2.1 Absorbance
450(3)
13.2.2 Low-Absorbance Approaches
453(8)
13.2.3 High-Absorbance Approaches
461(7)
13.2.4 Organic-Metal Oxide Composites
468(6)
13.3 Conclusions
474(5)
References
474(5)
Chapter 14 Next generation lithography---the rise of unconventional methods?
479(18)
Marcus Kaestner
Yana Krivoshapkina
Ivo W. Rangelow
14.1 The Ultimate Driving Force: Moore's Law
479(4)
14.1.1 The Semiconductor Industry: Where We are and Where We are Going?
480(1)
14.1.2 The Workhorse of the Semiconductor Industry and Its Physical Limitations
481(2)
14.2 Beyond Optical: State-of-the-Art in NGL
483(4)
14.2.1 X-Ray and EUV Lithography
483(1)
14.2.2 Nanoimprint Lithography
484(1)
14.2.3 Maskless Lithography (ML2)
485(2)
14.3 Beyond Scaling---Post Si-MOSFET/CMOS Technology
487(10)
References
489(8)
Chapter 15 Tip-based nanolithography methods and materials
497(46)
Yana Krivoshapkina
Marcus Kaestner
Ivo W. Rangelow
15.1 Scanning Probe Lithography
498(6)
15.1.1 Scanning Probe Microscopy and Scanning Probe Lithography Setup
498(6)
15.2 Scanning Probe Lithography Classification
504(12)
15.2.1 Force-Induced Interactions
504(3)
15.2.2 Heat-Induced Interactions
507(1)
15.2.3 Photon-, Ink-, Catalytic-Induced Interactions
508(1)
15.2.4 Electric-Field---Induced Interactions
509(7)
15.3 Increasing the Efficiency and Throughput of Scanning Probe Lithography
516(13)
15.3.1 Mix-and-Match and Step-and-Repeat Strategies
518(8)
15.3.2 Multicantilever Arrays by Using Active Cantilever Systems
526(3)
15.4 Conclusion
529(14)
Acknowledgments
529(1)
References
530(13)
Chapter 16 Thermal scanning probe lithography
543(20)
Philip C. Paul
16.1 History
543(1)
16.2 Advantages of Thermal Scanning Probe Lithography
544(3)
16.3 Patterning With Thermal Scanning Probe Lithography
547(3)
16.3.1 Temperatures
547(1)
16.3.2 Patterning of PPA
548(1)
16.3.3 Direct Evaporation of Other Resist Types
549(1)
16.3.4 Thermochemical Reactions
549(1)
16.3.5 Crosslinking Reactions
550(1)
16.4 Pattern Transfer Processes From PPA
550(8)
16.4.1 High-Resolution Etch Transfer
551(1)
16.4.2 Liftoff
552(2)
16.4.3 Three-Dimensional Transfer
554(2)
16.4.4 Mass Replication Techniques
556(1)
16.4.5 Guided Particle Assembly
557(1)
16.5 Conclusions
558(5)
References
558(5)
Chapter 17 Scanning helium ion beam lithography
563(32)
Xiaoqing Shi
Stuart A. Boden
17.1 Introduction
563(2)
17.2 Helium Ion Beam System and Ion Solid Interactions
565(12)
17.2.1 Working Principle of the Gas Field Ion Source
565(3)
17.2.2 Ion-Solid Interactions
568(9)
17.3 Exposure of Resists in Helium Ion Beam Lithography
577(13)
17.3.1 General Procedure and Considerations for HIBL
577(1)
17.3.2 HIBL With PMMA and HSQ
578(9)
17.3.3 HIBL With Fullerene Derivative Molecular Resist
587(2)
17.3.4 Evaluation of EUV Resists Using HIBL
589(1)
17.4 Conclusions and Outlook
590(5)
References
591(4)
Index 595
Dr Robinson obtained his PhD in 1999 for work on the development of materials for electron beam lithography performed at the Nanoscale Physics Research Laboratory of the University of Birmingham, and the Joint Research Center for Atom Technology in Japan. Following his PhD he investigated the modification of oxide surfaces using self-assembled monolayer, before returning to the Nanoscale Physics Research Laboratory to continue his research in lithography and microfabrication. He has recently taken up a Senior Research Fellowship in the Science City Research Alliance, based in the School of Chemical Engineering and the School of Chemistry at the Universities of Birmingham and Warwick respectively. He is currently investigating the application of advanced materials within the field of microfabrication, and the integration of functional materials with patterned substrates. Dr Lawson received his B.S. in Chemical Engineering at Tennessee Technological University in 2005. He received a Ph.D. in Chemical & Biomolecular Engineering in 2011 at the Georgia Institute of Technology where he also completed a Postdoctoral Fellowship. Since 2015, he has been at Milliken & Company where he is a Research Engineer working in the area of chemical technologies. He is an author of over 22 publications, 41 conference proceedings, and a U.S. Patent in the area of patterning materials including photoresist and block copolymer design, synthesis, and characterization along with simulation of resist processing and BCP self-assembly.