Muutke küpsiste eelistusi

E-raamat: Matrix Theory and Applications with MATLAB

(Texas A&M University, College Station, Texas, USA)
  • Formaat: 384 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482285635
  • Formaat - PDF+DRM
  • Hind: 156,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 384 pages
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482285635

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Designed for use in a second course on linear algebra, Matrix Theory and Applications with MATLAB covers the basics of the subject-from a review of matrix algebra through vector spaces to matrix calculus and unitary similarity-in a presentation that stresses insight, understanding, and applications. Among its most outstanding features is the integration of MATLAB throughout the text. Each chapter includes a MATLAB subsection that discusses the various commands used to do the computations in that section and offers code for the graphics and some algorithms used in the text.

All of the material is presented from a matrix point of view with enough rigor for students to learn to compose arguments and proofs and adjust the material to cover other problems. The treatment includes optional subsections covering applications, and the final chapters move beyond basic matrix theory to discuss more advanced topics, such as decompositions, positive definite matrices, graphics, and topology.

Filled with illustrations, examples, and exercises that reinforce understanding, Matrix Theory and Applications with MATLAB allows readers to experiment and visualize results in a way that no other text does. Its rigor, use of MATLAB, and focus on applications better prepares them to use the material in their future work and research, to extend the material, and perhaps obtain new results of their own.
Review of Matrix Algebra
1(29)
Matrices, Systems of Linear Equations, Determinants
1(28)
Matrix Algebra
3(9)
Systems of Linear Equations
12(3)
Determinant
15(5)
Optional (Ranking)
20(2)
MATLAB (Solving Ax = b)
22(7)
Introduction to Vector Spaces
29(46)
Vector Spaces
29(14)
Optional (Geometrical Description of the Solutions to Ax = b)
39(1)
MATLAB (Graphics)
40(3)
Dimension
43(15)
Optional (Dimension of Convex sets)
53(5)
Linear Transformations
58(17)
Optional (Graphics of Polygonal Shapes)
67(2)
MATLAB (Codes, including Picture of the Singular Matrices in Matrix Space)
69(6)
Similarity
75(42)
Nonsingular Matrices
76(11)
Optional (Interpolation and Pictures)
82(2)
MATLAB (Polyfit and Polyval)
84(3)
Diagonalization
87(12)
Optional (Buckling Beam)
93(3)
MATLAB (Eig and [ P, D])
96(3)
Conditions for Diagonalization
99(9)
Optional (Picture of Multiple Eigenvalue Matrices in Matrix Space)
105(1)
MATLAB (Code for Picture)
106(2)
Jordan Forms
108(9)
Optional (Numerical Problems in Finding the Jordan Form)
113(1)
MATLAB ([ P, D] and Defective A)
114(3)
Matrix Calculus
117(40)
Calculus of Matrices
117(11)
Optional (Modeling Spring-Mass Problems)
124(2)
MATLAB (Code for Graph of Function)
126(2)
Difference Equations
128(14)
Optional (Long-Run Prediction)
135(2)
MATLAB (Code for Viewing Solution to Difference Equations; Handling Large Matrices)
137(5)
Differential Equations
142(15)
Optional (Modeling Motions of a Building)
151(1)
MATLAB (Code for Viewing Solutions of Differential Equations Using expm)
152(5)
Normed Vector Spaces
157(48)
Vector Norms
157(9)
Optional (Evaluating Models)
162(2)
MATLAB (Vector Norms)
164(2)
Induced Matrix Norms
166(14)
Optional (Error in Solving Ax = b)
173(3)
MATLAB (Matrix Norms and Condition Numbers)
176(4)
Some Special Norms
180(11)
Optional (Splitting Techniques)
185(2)
MATLAB (Code for Iterative Solutions)
187(4)
Inner Product Norms and Orthogonality
191(14)
Optional (Closest Matrix from Symmetric Matrices)
200(1)
MATLAB (Orth and the Projection Matrix)
200(5)
Unitary Similarity
205(30)
Unitary Matrices
205(14)
Optional (Symmetry)
213(2)
MATLAB (Code for Picture of Orthogonal Matrices in 2 x 2 Matrix Space)
215(4)
Schur Decompositions
219(16)
Optional (Motion in Principal Axes)
228(3)
MATLAB (Schur)
231(4)
Singular Value Decomposition
235(30)
Singular Value Decomposition Theorem
236(16)
Optional (Physical Problems involving Least-Squares Solutions)
245(3)
MATLAB (Least-Squares Solutions to Ax = b)
248(4)
Applications of the SVD Theorem
252(13)
MATLAB (pinv, null, orth, and rank)
260(5)
LU and QR Decompositions
265(26)
The LU Decomposition
265(10)
Optional (Iterative Improvement in Solving Ax = b)
272(1)
MATLAB (lu, [ L, U] and [ L, U, F])
273(2)
The QR Decomposition
275(16)
Optional (QR Algorithm)
283(2)
MATLAB (Ax = b, QR, Householder, and Givens)
285(6)
Properties of Eigenvalues and Eigenvectors
291(18)
Continuity of Eigenvalues and Eigenvectors
291(8)
Optional (Eigenvectors and Multiple Eigenvalues)
297(2)
Perturbation of Eigenvalues and Eigenvectors
299(10)
Optional (Pictures of Eigenvalue and Eigenvector Sensitivity)
304(2)
MATLAB (Condeig)
306(3)
Hermitian and Positive Definite Matrices
309(22)
Positive Definite Matrices
309(11)
Optional (Solving the Motion of a Building Problem)
315(3)
MATLAB (Code for Computing P)
318(2)
Special Eigenvalue Results on Hermitian Matrices
320(11)
Optional (Optimization)
326(5)
Graphics and Topology
331(15)
Two Projection Matrices
331(9)
Optional (Drawing Pictures Using Projection Maps)
337(3)
Manifolds and Topological Sets
340(6)
Optional (Rank k Matrices)
344(2)
Appendix A: MATLAB 346(4)
Answers to Selected Exercises 350(15)
Bibliography 365
Hartfiel, Darald J.