Preface |
|
xv | |
1 Statistical Problems |
|
1 | (26) |
|
|
1 | (1) |
|
|
2 | (2) |
|
|
4 | (2) |
|
1.4 Infinity and Continuity in Statistics |
|
|
6 | (4) |
|
1.5 The Principle of Empirical Criticism |
|
|
10 | (4) |
|
1.5.1 The Objectivity of the Data |
|
|
12 | (1) |
|
1.5.2 The Subjectivity of Statistical Models |
|
|
13 | (1) |
|
1.5.3 The Subjective Prior |
|
|
14 | (1) |
|
1.6 The Concept of Utility |
|
|
14 | (2) |
|
1.7 The Principle of Frequentism |
|
|
16 | (2) |
|
1.8 Statistical Inferences |
|
|
18 | (1) |
|
|
19 | (7) |
|
|
20 | (1) |
|
1.9.2 Checking for Prior-Data Conflict |
|
|
21 | (2) |
|
1.9.3 Statistical Inference |
|
|
23 | (2) |
|
1.9.4 Checking the Prior for Bias |
|
|
25 | (1) |
|
|
26 | (1) |
2 Probability |
|
27 | (24) |
|
|
27 | (4) |
|
|
27 | (1) |
|
2.1.2 Conditional Probability |
|
|
28 | (3) |
|
2.2 Principle of Insufficient Reason |
|
|
31 | (4) |
|
2.3 Subjective Probability |
|
|
35 | (12) |
|
2.3.1 Comparative or Qualitative Probability |
|
|
35 | (2) |
|
2.3.2 Probability via Betting |
|
|
37 | (3) |
|
2.3.3 Probability and No Arbitrage |
|
|
40 | (3) |
|
|
43 | (1) |
|
|
44 | (2) |
|
|
46 | (1) |
|
2.4 Relative Frequency Probability |
|
|
47 | (3) |
|
2.4.1 Long-Run Relative Frequency |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
3 Characterizing Statistical Evidence |
|
51 | (44) |
|
|
51 | (1) |
|
3.2 Pure Likelihood Inference |
|
|
51 | (7) |
|
3.2.1 Inferences for the Full Parameter |
|
|
51 | (4) |
|
3.2.2 Inferences for a Marginal Parameter |
|
|
55 | (2) |
|
3.2.3 Prediction Problems |
|
|
57 | (1) |
|
3.2.4 Summarizing the Pure Likelihood Approach |
|
|
58 | (1) |
|
3.3 Sufficiency, Ancillarity and Completeness |
|
|
58 | (8) |
|
3.3.1 The Sufficiency Principle |
|
|
59 | (2) |
|
3.3.2 The Conditionality Principle |
|
|
61 | (3) |
|
|
64 | (2) |
|
|
66 | (1) |
|
3.4 p-Values and Confidence |
|
|
66 | (5) |
|
3.4.1 p-Values and Tests of Significance |
|
|
66 | (2) |
|
3.4.2 Neyman—Pearson Tests |
|
|
68 | (1) |
|
3.4.3 Rejection Trials and Confidence Regions |
|
|
69 | (2) |
|
3.4.4 Summarizing the Frequentist Approach |
|
|
71 | (1) |
|
|
71 | (19) |
|
|
72 | (5) |
|
3.5.2 Likelihood, Sufficiency and Conditionality |
|
|
77 | (1) |
|
3.5.3 MAP-Based Inferences |
|
|
78 | (3) |
|
3.5.4 Quantile-Based Inferences |
|
|
81 | (1) |
|
3.5.5 Loss-Based Inferences |
|
|
82 | (1) |
|
|
83 | (5) |
|
|
88 | (1) |
|
|
88 | (1) |
|
3.5.9 Bayesian Frequentism |
|
|
89 | (1) |
|
3.5.10 Summarizing the Bayesian Approach |
|
|
90 | (1) |
|
|
90 | (3) |
|
|
93 | (2) |
4 Measuring Statistical Evidence Using Relative Belief |
|
95 | (72) |
|
|
95 | (1) |
|
4.2 Relative Belief Ratios and Evidence |
|
|
96 | (10) |
|
4.2.1 Basic Definition of a Relative Belief Ratio |
|
|
97 | (5) |
|
4.2.2 General Definition of a Relative Belief Ratio |
|
|
102 | (4) |
|
4.3 Other Proposed Measures of Evidence |
|
|
106 | (7) |
|
|
108 | (2) |
|
4.3.2 Good's Information and Weight of Evidence |
|
|
110 | (1) |
|
4.3.3 Desiderata for a Measure of Evidence |
|
|
111 | (2) |
|
4.4 Measuring the Strength of the Evidence |
|
|
113 | (5) |
|
4.4.1 The Strength of the Evidence |
|
|
114 | (4) |
|
4.5 Inference Based on Relative Belief Ratios |
|
|
118 | (11) |
|
4.5.1 Hypothesis Assessment |
|
|
119 | (2) |
|
|
121 | (2) |
|
4.5.3 Prediction Inferences |
|
|
123 | (1) |
|
|
123 | (6) |
|
4.6 Measuring the Bias in the Evidence |
|
|
129 | (6) |
|
4.7 Properties of Relative Belief Inferences |
|
|
135 | (23) |
|
|
135 | (4) |
|
4.7.2 Convergence of Bias Measures |
|
|
139 | (1) |
|
4.7.3 Optimality of Relative Belief Credible Regions |
|
|
140 | (4) |
|
4.7.4 Optimality of Relative Belief Hypothesis Assessment |
|
|
144 | (2) |
|
4.7.5 Optimality of Relative Belief Estimation |
|
|
146 | (7) |
|
|
147 | (2) |
|
|
149 | (1) |
|
|
150 | (2) |
|
4.7.5.4 Relative Belief Credible Regions and Loss |
|
|
152 | (1) |
|
4.7.6 Robustness of Relative Belief Inferences |
|
|
153 | (5) |
|
|
158 | (1) |
|
|
159 | (8) |
|
4.9.1 Proof of Proposition 4.7.5 |
|
|
159 | (11) |
|
4.9.1.1 Proof of Proposition 4.7.9 |
|
|
160 | (1) |
|
4.9.1.2 Proof of Proposition 4.7.12 |
|
|
161 | (1) |
|
4.9.1.3 Proof of Proposition 4.7.13 |
|
|
162 | (1) |
|
4.9.1.4 Proof of Proposition 4.7.14 and Corollary 4.7.10 |
|
|
162 | (1) |
|
4.9.1.5 Proof of Proposition 4.7.16 |
|
|
163 | (1) |
|
4.9.1.6 Proof of Proposition 4.7.17 |
|
|
164 | (1) |
|
4.9.1.7 Proof of Proposition 4.7.18 |
|
|
164 | (1) |
|
4.9.1.8 Proof of Lemma 4.7.1 |
|
|
165 | (1) |
|
4.9.1.9 Proof of Proposition 4.7.19 |
|
|
166 | (1) |
5 Choosing and Checking the Model and Prior |
|
167 | (44) |
|
|
167 | (1) |
|
|
168 | (2) |
|
|
170 | (6) |
|
5.3.1 Eliciting Proper Priors |
|
|
170 | (2) |
|
|
172 | (4) |
|
5.4 Checking the Ingredients |
|
|
176 | (2) |
|
|
178 | (9) |
|
5.5.1 Checking a Single Distribution |
|
|
179 | (2) |
|
5.5.2 Checks Based on Minimal Sufficiency |
|
|
181 | (4) |
|
5.5.3 Checks Based on Ancillaries |
|
|
185 | (2) |
|
|
187 | (13) |
|
5.6.1 Prior-Data Conflict |
|
|
188 | (4) |
|
5.6.2 Prior-Data Conflict and Ancillaries |
|
|
192 | (2) |
|
5.6.3 Hierarchical Priors |
|
|
194 | (2) |
|
5.6.4 Hierarchical Models |
|
|
196 | (2) |
|
5.6.5 Invariant p-Values for Checking for Prior-Data Conflict |
|
|
198 | (1) |
|
5.6.6 Diagnostics for the Effect of Prior-Data Conflict |
|
|
199 | (1) |
|
|
200 | (9) |
|
|
209 | (2) |
6 Conclusions |
|
211 | (4) |
A The Definition of Density |
|
215 | (4) |
|
|
215 | (1) |
|
|
216 | (3) |
References |
|
219 | (10) |
Index |
|
229 | |