Muutke küpsiste eelistusi

E-raamat: Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches

(Lecturer in Solid Mechanics at the Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, ), , (Head and Chair Professor of Civil Engineering, City University of Hong Kong, Hong Kong)
  • Formaat: EPUB+DRM
  • Sari: Micro & Nano Technologies
  • Ilmumisaeg: 25-Dec-2016
  • Kirjastus: Elsevier - Health Sciences Division
  • Keel: eng
  • ISBN-13: 9780323431767
  • Formaat - EPUB+DRM
  • Hind: 170,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Micro & Nano Technologies
  • Ilmumisaeg: 25-Dec-2016
  • Kirjastus: Elsevier - Health Sciences Division
  • Keel: eng
  • ISBN-13: 9780323431767

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches presents various theoretical and numerical studies on mechanical behaviors of carbon nanotubes. The main theoretical aspects included in the book contain classical molecular dynamics simulation, atomistic-continuum theory, atomic finite element method, continuum plate, nonlocal continuum plate, and shell models.

Detailed coverage is also given to structural and elastic properties, trace of large deformation, buckling and post-buckling behaviors, fracture, vibration characteristics, wave propagation, and the most promising engineering applications.

This book not only illustrates the theoretical and numerical methods for analyzing the mechanical behavior of carbon nanotubes, but also contains computational results from experiments that have already taken place.

  • Covers various theoretical and numerical studies, giving readers a greater understanding of the mechanical behavior of carbon nanotubes
  • Includes multiscale methods that provide the advantages of atomistic and continuum approaches, helping readers solve complex, large-system engineering problems
  • Allows engineers to create more efficient carbon nanotube structures and devices

Muu info

A detailed study of what theoretical and numerical analysis of carbon nanotubes tells us about their mechanical behavior
Chapter 1 Introduction
1(22)
1.1 General
1(2)
1.2 Atomic Structure of CNTs
3(3)
1.3 General Development and Current Situation of CNTs in Nanoscience and Nanotechnology
6(1)
1.4 Fundamental Properties and General Behaviors of CNTs
6(6)
1.5 Theories for Mechanical Behaviors of CNTs
12(11)
1.5.1 Atomistic Simulations
12(1)
1.5.2 Continuum Models
13(2)
1.5.3 Hybrid Approaches
15(1)
References
16(7)
Chapter 2 Experimental Aspect
23(26)
2.1 Introduction
23(1)
2.2 Preparation Methods
24(3)
2.2.1 Arc Discharge and Laser Ablation
24(1)
2.2.2 Chemical Vapor Deposition
25(1)
2.2.3 CNTs Growth Mechanism
26(1)
2.2.4 CNT Quality
26(1)
2.3 Testing Technologies
27(6)
2.3.1 Raman Spectroscopy
28(2)
2.3.2 UV-vis-nIR Absorption Spectroscopy
30(2)
2.3.3 PL Spectroscopy
32(1)
2.3.4 Other Characterization Techniques
32(1)
2.4 Mechanical Properties of CNTs
33(2)
2.5 Application Prospect and Researching Significance
35(14)
2.5.1 Composite Materials
36(1)
2.5.2 Coatings and Films
37(1)
2.5.3 Microelectronics
38(1)
2.5.4 Energy Storage and Environment
38(1)
2.5.5 Biotechnology
39(1)
References
40(9)
Chapter 3 Classical Molecular Dynamics Simulations
49(92)
3.1 Introduction
49(1)
3.2 Computational Model
49(5)
3.3 Elastic Properties of CNTs
54(22)
3.3.1 Young's Modulus of Single-Walled CNTs With Impurities
54(6)
3.3.2 Effects of Vacancy Defect Reconstruction on the Elastic Properties of CNTs
60(8)
3.3.3 Young's Moduli of Single-Walled CNTs With Grafts
68(8)
3.4 Structural Stability and Buckling of CNTs
76(21)
3.4.1 Buckling of SWCNTs and MWCNTs
76(11)
3.4.2 Structural Stability of a Coaxial CNTs Inside a Boron---Nitride Nanotube
87(10)
3.5 Buckling of CNTs Bundles
97(22)
3.5.1 CNT Bundles Under Axial Tension
102(2)
3.5.2 CNT Bundles Under Axial Compression
104(5)
3.5.3 Twisting Effects of CNTs Bundles
109(10)
3.6 Fracture of CNTs
119(3)
3.7 Thermal Stability of CNTs
122(19)
3.7.1 Close-Capped Single-Walled CNTs
128(2)
3.7.2 Open-Ended Single-Walled CNTs
130(3)
3.7.3 Open-Ended Multiwalled CNTs
133(2)
References
135(6)
Chapter 4 Atomistic-Continuum Theory
141(108)
4.1 Introduction
141(4)
4.1.1 Overview of Mesh-Free Methods
142(1)
4.1.2 Advantages and Disadvantages of Mesh-Free Methods
143(2)
4.2 Cauchy--Born Rule
145(1)
4.3 Atomistic-Continuum Theory
146(4)
4.4 Structural and Elastic Properties of SWCNTs
150(9)
4.4.1 Transformation of SWCNTs
150(3)
4.4.2 Structural Parameters
153(2)
4.4.3 Elastic Properties
155(3)
4.4.4 Pressure---Radial Strain Curve
158(1)
4.5 Mesh-Free Computational Framework
159(27)
4.5.1 Moving least-squares approximation
161(2)
4.5.2 Weight Functions
163(5)
4.5.3 Domain of Influence of Nodes
168(1)
4.5.4 MK Interpolation
169(3)
4.5.5 The Mesh-Free Computational Framework
172(6)
4.5.6 Integration Scheme for a Discrete Equation
178(1)
4.5.7 Enforcement of Essential Boundary Conditions
179(2)
4.5.8 Stability of the Algorithm
181(1)
4.5.9 Procedures for Equilibrium Solution
181(1)
4.5.10 Validation Studies
182(1)
4.5.11 Uniform Tension
182(3)
4.5.12 Bending Test
185(1)
4.6 Buckling and Postbuckling Behaviors
186(22)
4.6.1 Hydrostatic Pressure-Induced Structural Transitions of SWCNTs
186(4)
4.6.2 Axial Buckling of SWCNTs
190(3)
4.6.3 Torsional Buckling of SWCNTs
193(5)
4.6.4 Buckling Behavior of SWCNTs Upon Bending
198(8)
4.6.5 Axial Buckling and Postbuckling Behaviors of SWCNTs
206(2)
4.7 Fracture Nucleation
208(8)
4.7.1 Fracture Nucleation in SWCNTs
212(1)
4.7.2 Prebifurcation
213(1)
4.7.3 Onset of Bifurcation
213(1)
4.7.4 Young's Modulus of an SWCNT
214(1)
4.7.5 Bifurcation Strain and Fracture Strength
214(2)
4.8 Bernoulli---Euler Beam Model and Global Buckling
216(10)
4.8.1 Bernoulli---Euler Beam Model
216(6)
4.8.2 Global Buckling of SWCNTs Under Axial Compression
222(4)
4.9 Vibration Characteristics
226(23)
4.9.1 Analysis of Free Vibration Characteristic of Carbon Nanostructures
227(1)
4.9.2 Quasicontinuum Model
227(1)
4.9.3 Atomistic Simulation
228(1)
4.9.4 Free Vibration of SWCNTs
228(2)
4.9.5 The Edge Effect on the Free Vibration Frequency
230(2)
4.9.6 Chiral Effect and Critical Diameter
232(9)
References
241(8)
Chapter 5 Atomic Finite Element Method and Coupling With Atomistic-Continuum Method
249(12)
5.1 Introduction
249(1)
5.2 Atomic Finite Element Method
249(2)
5.3 Coupling of Atomic Finite Element Method With Atomistic-Continuum Method
251(3)
5.3.1 Quasicontinuum Method
251(1)
5.3.2 Bridging Domain Method
252(1)
5.3.3 Bridging Scale Method
252(2)
5.4 Tensile Failure
254(7)
5.4.1 Bending Test
255(1)
5.4.2 Tensile Failure of SWCNTs With a Single-Atom Vacancy Defect
256(2)
References
258(3)
Chapter 6 Continuum Models
261(40)
6.1 Introduction
261(2)
6.2 Explicit Formulas for van der Waals Interaction
263(1)
6.3 Continuum Shell Model
264(2)
6.4 Buckling of CNTs
266(15)
6.4.1 General MWCNTs
266(1)
6.4.2 An Explicit Solution for DWCNTs
267(1)
6.4.3 The Particular Case of DWCNTs Without vdW Interaction
268(1)
6.4.4 DWCNTs With vdW Interaction
269(3)
6.4.5 vdW Interaction Before Buckling
272(1)
6.4.6 vdW Interaction After Buckling
273(2)
6.4.7 Buckling of a DWCNT
275(3)
6.4.8 Buckling of MWCNTs
278(3)
6.5 Vibration Characteristics of CNTs
281(20)
6.5.1 Donnell Shell Model for the Vibration of MWCNT
281(2)
6.5.2 Radial Vibration Analysis of MWCNT
283(15)
References
298(3)
Chapter 7 Nonlocal Elasticity Theories
301(34)
7.1 Introduction
301(1)
7.2 Nonlocal Elastic Beam Model
302(7)
7.2.1 Nonlocal Beam and Rod Models for Vibration of SWCNTs
302(4)
7.2.2 Nonlocal Elastic Beam Models for Flexural Wave Propagation in DWCNTs
306(3)
7.3 Nonlocal Elastic Shell Model
309(2)
7.4 Vibration Characteristics of CNTs
311(6)
7.5 Wave Propagation of CNTs
317(18)
7.5.1 Nonlocal Elastic Beam Models for Flexural Wave Propagation
317(7)
7.5.2 Nonlocal Shell Model for Elastic Wave Propagation
324(7)
References
331(4)
Chapter 8 Technologically Relevant Applications
335(52)
8.1 Introduction
335(1)
8.2 Conveying Fluid
336(19)
8.2.1 Driving Water Molecules Along an SWCNT
340(8)
8.2.2 Driving Water Molecules Along a Diameter-Gradient SWCNT
348(7)
8.3 Hydrogen Storage
355(13)
8.3.1 Computational Methodology and Physical Models
357(2)
8.3.2 Reaction Pathway of Atomic Hydrogen Interaction With CNT
359(4)
8.3.3 Enthalpies and Free Energies of the Reaction
363(5)
8.4 Mass Detection
368(19)
8.4.1 The Initial Equilibrium SWCNC
370(1)
8.4.2 Analysis of Resonant Frequency and Frequency Shift
370(10)
References
380(7)
Chapter 9 2-D Graphene and White Graphene
387(24)
9.1 Introduction
387(2)
9.2 Preparation Methods and Testing Technologies
389(4)
9.2.1 Preparation Methods
389(1)
9.2.2 Characterizing Graphene Flakes
390(1)
9.2.3 Scanning Probe Microscopy
391(1)
9.2.4 Raman Spectroscopy
392(1)
9.3 Fundamental Properties and General Behaviors
393(5)
9.3.1 Electronic Properties
393(1)
9.3.2 Mechanical Properties
394(1)
9.3.3 Optical Properties
395(1)
9.3.4 Thermal Properties
395(3)
9.4 Recent Research Advance in 2-D Graphene and White Graphene
398(1)
9.5 Application Prospects
399(12)
9.5.1 Field Effect Transistors
399(1)
9.5.2 Sensors
400(2)
9.5.3 Clean Energy Devices
402(1)
9.5.4 Graphene---Polymer Nanocomposites
403(1)
References
403(8)
Chapter 10 Arrangements of Carbon-Based Structures
411(32)
10.1 Introduction
411(1)
10.2 Carbon Nanorings
411(16)
10.2.1 MD Simulation
412(1)
10.2.2 Carbon Nanorings
412(1)
10.2.3 Armchair Nanorings
412(1)
10.2.4 Zigzag Nanorings
413(6)
10.2.5 Critical Tension Displacements
419(2)
10.2.6 Buckling Shapes
421(6)
10.3 Carbon Nanocoils
427(8)
10.3.1 Geometric Structures
427(1)
10.3.2 The Maximum Rising Angles
428(1)
10.3.3 Stable Characteristics of Carbon Nanosprings
429(1)
10.3.4 Equilibrium Structures
430(3)
10.3.5 Critical Rising Angles
433(2)
10.4 Carbon Nanocones
435(8)
10.4.1 The Effect of Apex Angle on Mechanical Behaviors of CNCs
436(3)
10.4.2 The Effect of Cutting Tip's Length on Buckling of CNCs
439(2)
References
441(2)
Index 443
Kim Meow Liew is the Head and Chair Professor of Civil Engineering at City University of Hong Kong, Hong Kong. His research activities encompass computational mechanics, optimization, numerical methods, nanomechanics and nanomaterials, multi-scale modeling, simulation and bioengineering. He is the Editor-in-Chief of International Review of Civil Engineering (Praiseworthy Prize) and Journal of Modeling in Mechanics & Materials (De Gruyter) and Associate Editor of Journal of Vibration and Control (Sage) and Journal of Nanoscience Letters (Simplex Academic Publishers). He serves on the editorial boards for more than two dozen journals. He has contributed over 750 articles to peer-reviewed journals, and is a Fellow of the HKIE (Hong Kong), ASME (USA), IMechE (UK) and IES (Singapore). He is listed by the Institute for Scientific Information (ISI) as a Highly Cited Researcher in engineering. Jian-Wei Yan is a Lecturer in Solid Mechanics at the Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Jinan University, China. His research focuses on the mechanical behaviors of nanostructures, and on computation mechanics, and he has published 11 papers in peer-reviewed journals. Lu-Wen Zhang is a Distinguished Research Professor in Mechanics at Shanghai Jiao Tong University. Previously she was an Associate Professor at Shanghai Ocean University, China. Her main research interests focus on the computational mechanics, nanocomposite materials and smart structures. She works on her research in the areas of theoretical development and application of numerical and computational methods for applied mathematics and nanomechanics. She has published over 65 peer-reviewed journal articles, and is Editor of Journal of Modeling in Mechanics & Materials (De Gruyter). She was also Guest Editor on a Special Issue of Mathematical Problems in Engineering Journal (Hindawi Publishing) on Computational Methods for Engineering Science in 2014.