Muutke küpsiste eelistusi

E-raamat: Metric Space Topology: Examples, Exercises And Solutions

(The Univ Of Hong Kong, Hong Kong)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 257,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This introductory book contains a rich collection of exercises and worked examples in Metric Spaces. Other than questions in the traditional setting, plenty of True-or-False type questions and open-ended questions are included. With detailed solutions, these are highly effective in helping students gain a bird's eye view and master the subject and pitfalls better. The presentation is clear in nurturing the mathematical insights and mathematical maturity of the readers. In this book, the pictorializationor visualization of abstract situations into simple pictures is very often crucially conducive to the understanding of the materials. This serves to give an insightful view of the intricate problems, as well as a clue or a direction to formulate rigorousarguments. The learning outcomes include: Demonstrate knowledge and understanding of the basic features of mathematical analysis and point set topology (e.g., able to identify objects that are topological equivalent); Apply knowledge and skills acquired in mathematical analysis to analyze and handle novel situations in a critical way (e.g., able to determine whether a specific function is uniformly continuous); Think creatively and laterally to generate innovative examples and solutions to non-standard problems (e.g., able to construct counterexamples to inaccurate mathematical statements). Acquire sufficient background for further studies in Functional Analysis, Real Analysis, Differential Geometry, Complex Analysis, Algebraic Geometry, Probability Theory, Mathematical Physics, Economics, and others"--