Muutke küpsiste eelistusi

E-raamat: Morphing Aerospace Vehicles and Structures

Series edited by (MIT), Series edited by (BAE Systems, UK), Series edited by (University of Liverpool, UK), Edited by (Texas A&M University), Series edited by (Parker Aerospace Group, USA)
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 07-Feb-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119964025
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 151,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 07-Feb-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119964025
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Morphing Aerospace Vehicles and Structures provides a highly timely presentation of the state-of-the-art, future directions and technical requirements of morphing aircraft. Divided into three sections it addresses morphing aircraft, bio-inspiration, and smart structures with specific focus on the flight control, aerodynamics, bio-mechanics, materials, and structures of these vehicles as well as power requirements and the use of advanced piezo materials and smart actuators. The tutorial approach adopted by the contributors, including underlying concepts and mathematical formulations, unifies the methodologies and tools required to provide practicing engineers and applied researchers with the insight to synthesize morphing air vehicles and morphing structures, as well as offering direction for future research.
List of Contributors
xiii
Foreword xv
Series Preface xvii
Acknowledgments xix
1 Introduction
1(12)
John Valasek
1.1 Introduction
1(1)
1.2 The Early Years: Bio-Inspiration
2(3)
1.3 The Middle Years: Variable Geometry
5(4)
1.4 The Later Years: A Return to Bio-Inspiration
9(1)
1.5 Conclusion
10(3)
References
10(3)
Part I BIO-INSPIRATION
2 Wing Morphing in Insects, Birds and Bats: Mechanism and Function
13(28)
Graham K. Taylor
Anna C. Carruthers
Tatjana Y. Hubel
Simon M. Walker
2.1 Introduction
13(1)
2.2 Insects
14(11)
2.2.1 Wing Structure and Mechanism
15(3)
2.2.2 Gross Wing Morphing
18(7)
2.3 Birds
25(7)
2.3.1 Wing Structure and Mechanism
25(3)
2.3.2 Gross Wing Morphing
28(2)
2.3.3 Local Feather Deflections
30(2)
2.4 Bats
32(5)
2.4.1 Wing Structure and Mechanism
33(2)
2.4.2 Gross Wing Morphing
35(2)
2.5 Conclusion
37(4)
Acknowledgements
37(1)
References
38(3)
3 Bio-Inspiration of Morphing for Micro Air Vehicles
41(16)
Gregg Abate
Wei Shyy
3.1 Micro Air Vehicles
41(2)
3.2 MAV Design Concepts
43(3)
3.3 Technical Challenges for MAVs
46(1)
3.4 Flight Characteristics of MAVs and NAVs
47(1)
3.5 Bio-Inspired Morphing Concepts for MAVs
48(3)
3.5.1 Wing Planform
50(1)
3.5.2 Airfoil Shape
50(1)
3.5.3 Tail Modulation
50(1)
3.5.4 CG Shifting
50(1)
3.5.5 Flapping Modulation
51(1)
3.6 Outlook for Morphing at the MAV/NAV scale
51(1)
3.7 Future Challenges
51(2)
3.8 Conclusion
53(4)
References
53(4)
Part II CONTROL AND DYNAMICS
4 Morphing Unmanned Air Vehicle Intelligent Shape and Flight Control
57(30)
John Valasek
Kenton Kirkpatrick
Amanda Lampton
4.1 Introduction
57(1)
4.2 A-RLC Architecture Functionality
58(1)
4.3 Learning Air Vehicle Shape Changes
59(4)
4.3.1 Overview of Reinforcement Learning
59(3)
4.3.2 Implementation of Shape Change Learning Agent
62(1)
4.4 Mathematical Modeling of Morphing Air Vehicle
63(10)
4.4.1 Aerodynamic Modeling
63(1)
4.4.2 Constitutive Equations
64(3)
4.4.3 Model Grid
67(1)
4.4.4 Dynamical Modeling
68(3)
4.4.5 Reference Trajectory
71(1)
4.4.6 Shape Memory Alloy Actuator Dynamics
71(2)
4.4.7 Control Effectors on Morphing Wing
73(1)
4.5 Morphing Control Law
73(4)
4.5.1 Structured Adaptive Model Inversion (SAM1) Control for Attitude Control
73(3)
4.5.2 Update Laws
76(1)
4.5.3 Stability Analysis
77(1)
4.6 Numerical Examples
77(7)
4.6.1 Purpose and Scope
77(1)
4.6.2 Example 1: Learning New Major Goals
77(3)
4.6.3 Example 2: Learning New Intermediate Goals
80(4)
4.7 Conclusions
84(3)
Acknowledgments
84(1)
References
84(3)
5 Modeling and Simulation of Morphing Wing Aircraft
87(40)
Borna Obradovic
Kamesh Subbarao
5.1 Introduction
87(1)
5.1.1 Gull-Wing Aircraft
87(1)
5.2 Modeling of Aerodynamics with Morphing
88(5)
5.2.1 Vortex-Lattice Aerodynamics for Morphing
90(2)
5.2.2 Calculation of Forces and Moments
92(1)
5.2.3 Effect of Gull-Wing Morphing on Aerodynamics
92(1)
5.3 Modeling of Flight Dynamics with Morphing
93(12)
5.3.1 Overview of Standard Approaches
93(4)
5.3.2 Extended Rigid-Body Dynamics
97(3)
5.3.3 Modeling of Morphing
100(5)
5.4 Actuator Moments and Power
105(4)
5.5 Open-Loop Maneuvers and Effects of Morphing
109(9)
5.5.1 Longitudinal Maneuvers
109(5)
5.5.2 Turn Maneuvers
114(4)
5.6 Control of Gull-Wing Aircraft using Morphing
118(5)
5.6.1 Power-Optimal Stability Augmentation System using Morphing
119(4)
5.7 Conclusion
123(4)
Appendix
123(1)
References
124(3)
6 Flight Dynamics Modeling of Avian-Inspired Aircraft
127(24)
Jared Grauer
James Hubbard Jr
6.1 Introduction
127(2)
6.2 Unique Characteristics of Flapping Flight
129(5)
6.2.1 Experimental Research Flight Platform
129(1)
6.2.2 Unsteady Aerodynamics
130(1)
6.2.3 Configuration-Dependent Mass Distribution
131(1)
6.2.4 Nonlinear Flight Motions
131(3)
6.3 Vehicle Equations of Motion
134(6)
6.3.1 Conventional Models for Aerospace Vehicles
134(2)
6.3.2 Multibody Model Configuration
136(2)
6.3.3 Kinematics
138(1)
6.3.4 Dynamics
138(2)
6.4 System Identification
140(4)
6.4.1 Coupled Actuator Models
141(2)
6.4.2 Tail Aerodynamics
143(1)
6.4.3 Wing Aerodynamics
143(1)
6.5 Simulation and Feedback Control
144(4)
6.6 Conclusion
148(3)
References
148(3)
7 Flight Dynamics of Morphing Aircraft with Time-Varying Inertias
151(26)
Daniel T. Grant
Stephen Sorley
Animesh Chakravarthy
Rick Lind
7.1 Introduction
151(1)
7.2 Aircraft
152(4)
7.2.1 Design
152(2)
7.2.2 Modeling
154(2)
7.3 Equations of Motion
156(6)
7.3.1 Body-Axis States
156(1)
7.3.2 Influence of Time-Varying Inertias
157(1)
7.3.3 Nonlinear Equations for Moment
157(2)
7.3.4 Linearized Equations for Moment
159(2)
7.3.5 Flight Dynamics
161(1)
7.4 Time-Varying Poles
162(4)
7.4.1 Definition
162(2)
7.4.2 Discussion
164(1)
7.4.3 Modal Interpretation
164(2)
7.5 Flight Dynamics with Time-Varying Morphing
166(11)
7.5.1 Morphing
166(1)
7.5.2 Model
166(2)
7.5.3 Poles
168(3)
7.5.4 Modal Interpretation
171(3)
References
174(3)
8 Optimal Trajectory Control of Morphing Aircraft in Perching Maneuvers
177(30)
Adam M. Wickenheiser
Ephrahim Garcia
8.1 Introduction
177(2)
8.2 Aircraft Description
179(2)
8.3 Vehicle Equations of Motion
181(4)
8.4 Aerodynamics
185(6)
8.5 Trajectory Optimization for Perching
191(5)
8.6 Optimization Results
196(6)
8.7 Conclusions
202(5)
References
202(5)
Part III SMART MATERIALS AND STRUCTURES
9 Morphing Smart Material Actuator Control Using Reinforcement Learning
207(24)
Kenton Kirkpatrick
John Valasek
9.1 Introduction to Smart Materials
207(3)
9.1.1 Piezoelectrics
208(1)
9.1.2 Shape Memory Alloys
208(1)
9.1.3 Challenges in Controlling Shape Memory Alloys
209(1)
9.2 Introduction to Reinforcement Learning
210(8)
9.2.1 The Reinforcement Learning Problem
210(1)
9.2.2 Temporal-Difference Methods
211(2)
9.2.3 Action Selection
213(2)
9.2.4 Function Approximation
215(3)
9.3 Smart Material Control as a Reinforcement Learning Problem
218(3)
9.3.1 State-Spaces and Action-Spaces for Smart Material Actuators
218(2)
9.3.2 Function Approximation Selection
220(1)
9.3.3 Exploiting Action-Value Function for Control
220(1)
9.4 Example
221(7)
9.4.1 Simulation
222(3)
9.4.2 Experimentation
225(3)
9.5 Conclusion
228(3)
References
229(2)
10 Incorporation of Shape Memory Alloy Actuators into Morphing Aerostructures
231(30)
Justin R. Schick
Darren J. Hartl
Dimitris C. Lagoudas
10.1 Introduction to Shape Memory Alloys
231(7)
10.1.1 Underlying Mechanisms
232(1)
10.1.2 Unique Engineering Effects
233(4)
10.1.3 Alternate Shape Memory Alloy Options
237(1)
10.2 Aerospace Applications of SMAs
238(9)
10.2.1 Fixed-Wing Aircraft
239(6)
10.2.2 Rotorcraft
245(1)
10.2.3 Spacecraft
246(1)
10.3 Characterization of SMA Actuators and Analysis of Actuator Systems
247(9)
10.3.1 Experimental Techniques and Considerations
248(4)
10.3.2 Established Analysis Tools
252(4)
10.4 Conclusion
256(5)
References
256(5)
11 Hierarchical Control and Planning for Advanced Morphing Systems
261(20)
Mrinal Kumar
Suman Chakravorty
11.1 Introduction
261(3)
11.1.1 Hierarchical Control Philosophy
262(2)
11.2 Morphing Dynamics and Performance Maps
264(7)
11.2.1 Discretization of Performance Maps via Graphs
265(5)
11.2.2 Planning on Morphing Graphs
270(1)
11.3 Application to Advanced Morphing Structures
271(8)
11.3.1 Morphing Graph Construction
273(2)
11.3.2 Introduction to the Kagome Truss
275(2)
11.3.3 Examples of Morphing with the Kagome Truss
277(2)
11.4 Conclusion
279(2)
References
279(2)
12 A Collective Assessment
281(4)
John Valasek
12.1 Looking Around: State-of-the-Art
281(1)
12.1.1 Bio-Inspiration
281(1)
12.1.2 Aerodynamics
281(1)
12.1.3 Structures
282(1)
12.1.4 Automatic Control
282(1)
12.2 Looking Ahead: The Way Forward
282(1)
12.2.1 Materials
282(1)
12.2.2 Propulsion
283(1)
12.3 Conclusion
283(2)
Index 285
John Valasek, Texas A&M University, USA John Valasek is Associate Professor and Director of the Vehicle Systems & Control Laboratory within the Aerospace Engineering Department at Texas A&M University. He has been actively conducting flight mechanics and controls research of Manned and Unmanned Air Vehicles in both Industry and Academia for 25 years. He was previously a Flight Control Engineer for the Northrop Corporation, Aircraft Division. He has published over 100 peer reviewed articles, and is co-inventor on a patent for autonomous air refueling of unmanned air vehicles. His research is currently focused on bridging the gap between traditional computer science topics and aerospace engineering topics, encompassing machine learning and multi-agent systems, intelligent autonomous control, vision based navigation systems, fault tolerant adaptive control, and cockpit systems and displays.?He teaches courses in Atmospheric Flight Mechanics, Digital Flight Control Systems, Vehicle Management Systems, Cockpit Systems & Displays, and Aircraft Design.